

SRBR 2014

SOCIETY FOR RESEARCH ON BIOLOGICAL RHYTHMS
JUNE 14-18
BIG SKY, MONTANA

14th Biennial Meeting

Conference Program

SRBR Thanks Our Sponsors

Contents

Committees
Sched.org
Exhibitors
President's Welcome
General Information
Special Events
Meeting at a Glance
Trainee Professional Development Day
Junior Faculty Workshops
SRBR 2014 Program Overview
Poster Titles
Index of Authors 6
Index of Keywords74
Participants
Notes

Committees

Executive Committee

Carl Johnson, President Vanderbilt University

Paul Hardin, President-elect Texas A & M University

Paul Taghert, Treasurer Washington University in St. Louis

Nicolas Cermakian, Secretary McGill University

Members-at-Large

Fernanda Ceriani Fundaciòn Instituto Leloir

Johanna H. Meijer Leiden University Medical Centre

David Welsh University of California, La Jolla

Ex-officio Members

Michael Hastings
MRC Laboratory of Molecular Biology

Dave Weaver University of Massachusetts

Rae Silver Columbia University

Marty Zatz Editor JBR (retired)

Deborah Bell-Pedersen Texas A & M University

Shelley Tischkau Southern Illinois University, School of Medicine

Frank Scheer Brigham and Women's Hospital, Harvard Medical School

Karen Gamble University of Alabama at Birmingham

Valerie Mongrain *Université de Montréal*

Michael Nitabach Yale University

Program Committee

Erik Herzog, Chair Washington University in St. Louis

Phyllis Zee Northwestern University Amita Sehgal University of Pennsylvania

Elizabeth S. Maywood MRC Laboratory of Molecular Biology, Cambridge

Samer Hattar Johns Hopkins University

Andrew Loudon University of Manchester

Johanna H. Meijer Leiden University Medical Centre

Akhilesh B. Reddy University of Cambridge

Michael Nitabach Yale University

Andrew Millar University of Edinburgh

Ying-Hui Fu UCSF

Kazuhiro Yagita Kyoto Prefectural University of Medicine

Ketema Paul Morehouse School of Medicine

Carla B. Green
University of Texas Southwestern
Medical Center

Fernanda Ceriani Fundaciòn Instituto Leloir

Vijay Sharma Jawaharlal Nehru Centre for Advanced Scientific Research

Hiroki R. Ueda RIKEN / University of Tokyo

Logo Committee

Michael Sellix, Chair University of Rochester School of Medicine

Roelof Hut University of Groningen

Alec Davidson

Morehouse School of Medicine

Julie Pendergast Vanderbilt University Medical Center

Aaron Sheppard University of Notre Dame

Committee on Trainee Professional Development Day

Karen Gamble, Chair University of Alabama at Birmingham

Allison Brager

Morehouse School of Medicine

Eva Winnebeck Ludwig Maximilian University of Munich

Louise Kearney
The University of Manchester

Ruifeng Cao McGill University

Takashi Kudo University of California, Los Angeles

Nicolas Cermakian McGill University

Doug McMahon Vanderbilt University

Joanna Chiu *University of California, Davis*

Eric Mintz
Kent State University

Committee on Junior Faculty Workshops

Karen Gamble, Chair University of Alabama at Birmingham

Jeanne Duffy Harvard Medical School

Michael Antle University of Calgary

Andrew Phillips
Harvard Medical School

Award Committee

Simon Archer University of Surrey

Roelof Hut University of Groningen

Luis Larrondo Pontificia Universidad Católica de Chile

Valérie Mongrain *Université de Montréal*

Abstract Reviewers

Robert Dallmann University of Zurich

Hugues Dardente Tours University

David Gatfiled University of Lausanne

Fabienne Guillaumond Aix-Marseille University

Jérôme Menet Texas A&M University

Ralph Mistlberger Simon Fraser University

Gosia Oklejewicz Erasmus University Medical Center

Stuart Peirson University of Oxford

Julie Pendergast Vanderbilt University

Victoria Revell University of Surrey

Frank Scheer
Havard Medical School

Christina Schmidt University of Basel

Florian Storch
McGill University

Gilles Vandewalle University of Liège

Michael Verwey McGill University

Antoine Viola University of Basel

Membership Committee

Nicolas Ceramakian, Chair McGill University

Steven Brown University of Zurich

Zheng (Jake) Chen University of Texas Southwestern

Jeanne Duffy
BWH and Harvard Medical School

Takashi Yoshimura Nagoya University

Eva Winnebeck
Ludwig Maximilians University

Communications Committee

Shelley Tischkau, Chair Southern Illinois University School of Medicine Eric Mintz
Kent State University

Allison Brager

Morehouse School of Medicine

Ozge Ozkaya University of Leicester

Journal of Biological Rhythms

William J. Schwartz, Editor-in-Chief University of Massachusetts Medical School

David R. Weaver, Deputy Editor University of Massachusetts Medical School

Advisory Board

Charles A. Czeisler Brigham & Women's Hospital and Harvard Medical School

Serge Daan
University of Groningen

Jay C. Dunlap Geisel School of Medicine at Dartmouth College

Russell G. Foster University of Oxford

Susan S. Golden
University of California, San Diego

Michael H. Hastings University of Cambridge

Michael Menaker University of Virginia

Michael Rosbash Brandeis University

Ueli Schibler University of Geneva

Joseph S. Takahashi University of Texas Southwestern Medical Center

Michael W. Young Rockefeller University

Martin Zatz
Editor-in-Chief (Ret.), Journal of
Biological Rhythms

Editorial Board

Charles N. Allen Oregon Health and Science University

Josephine Arendt University of Surrey

Deborah Bell-Pedersen Texas A&M University

Eric L. Bittman
University of Massachusetts,
Amherst

Diane B. Boivin *McGill University*

Vincent M. Cassone University of Kentucky

Nicolas Cermakian McGill University

Horacio O. de la Iglesia University of Washington

Jeanne F. Duffy
Brigham & Women's Hospital and
Harvard Medical School

Charmane I. Eastman Rush University

Patrick Emery
University of Massachusetts Medical
School

Carolina Escobar National Autonomous University of Mexico

Daniel B. Forger University of Michigan

Bruce D. Goldman *University of Connecticut*

Diego A. Golombek
National University of Quilmes

Carla B. Green University of Texas Southwestern Medical Center

Paul E. Hardin Texas A&M University

Stacey L. Harmer *University of California, Davis*

Samer Hattar

Johns Hopkins University

Charlotte Helfrich-Förste

Charlotte Helfrich-Förster University of Würzburg

Hanspeter Herzel Humboldt University Berlin

Erik D. Herzog Washington University in St. Louis

Todd C. Holmes University of California, Irvine

Roelof A. Hut University of Groningen

Carl H. Johnson Vanderbilt University

David J. Kennaway University of Adelaide

Takao Kondo *Nagoya University* Achim Kramer

Achim Kramer Charité Berlin Charalambos P. Kyriacou *University of Leicester*

Jennifer J. Loros Geisel School of Medicine at Dartmouth College

Andrew S. Loudon *University of Manchester*

Elizabeth S. Maywood MRC Laboratory of Molecular Biology, Cambridge

Johanna H. Meijer Leiden University Medical Centre

Martha W. Merrow Ludwig-Maximilians University Munich

C. Robertson McClung Dartmouth College Ralph E. Mistlberger Simon Fraser University

Lawrence P. Morin Stony Brook University

Randy J. Nelson Ohio State University

Hitoshi Okamura Kyoto University

Terry L. Page *Vanderbilt University*

Stuart Peirson University of Oxford

Till Roenneberg
Ludwig-Maximilians University
Munich

Paolo Sassone-Corsi University of California, Irvine Amita Sehgal University of Pennsylvania

Rae Silver Columbia University

Alena Sumová Academy of Sciences of the Czech Republic

Paul H. Taghert

Washington University in St. Louis

David K. Welsh

University of California, San Diego

Kenneth P. Wright, Jr. *University of Colorado*

Takashi Yoshimura Nagoya University

AV Committee

Aaron Sheppard, Chair University of Notre Dame

Sched.org

Want to generate a personalized meeting itinerary for your phone, laptop or tablet? Follow these three easy steps:

- **1. Create an account.** Go to http://srbrmeeting2014.sched.org/ on any device with internet access. Click "sign up" in the top right of the screen. Choose "sign up with e-mail." Follow the short instructions to become a member of the official SRBR online scheduler. Your account information and email are private and not shared with anyone.
- 2. Create your profile. Follow the instructions to add your name. You can also include a picture, your company/school name, a description of yourself, and/or interests. Save your profile and you are instantly added to the list of attendees. You now have access to meeting information including: Events, Speakers, Slide and Poster Abstracts (located as links on the bottom of the page for the Slide Session and Poster Session events) and Big Sky Resort activities and restaurants (listed under Free Time Events).
- **3. Create your schedule.** Each event in the schedule is color-coded. To add an event to your schedule mouse over the event and click or check the event. To check *your* customized schedule at anytime click the **P** in the upper right hand and choose "my sched." Here, you can also change your settings. For further information or support please click here.

Please go to http://support.sched.org/customer/portal/articles/1346902-bookmark-the-mobile-web-app for instructions on how to add an SRBR 2014 icon to your iPhone or android.

Exhibitors

Exhibitor tables will be set up in the Lower Atrium throughout the entire meeting. Please take some time to visit with our exhibitors, as they have provided generous support of the meeting.

ATTO Corporation

3-2-2 Motoasakusa, Taito-ku, Tokyo, 111-0041 Japan Contact: Arao Keiichi arao.k@atto.co.jp

CamNtech, Inc.

630 Boerne Stage Airfield Boerne, TX 78006-5158 USA Contact: Dennis McCarthy 1-830-755-8036 sales@camntech.com

Condor Instruments LTDA

Rua Inhatium, 162 São Paulo, 05468-160 Brazil Contact: Rodrigo Trevisan Okamoto ro@condorinst.com.br

Research Diets, Inc.

20 Jules Lane
New Brunswick, NJ 08901 USA
Contact: Matt Ricci
matthew.ricci@ResearchDiets.com

Stanford Photonics, Inc.

1032 Elwell Court, Suite 104 Palo Alto, CA 94303 Contact: David M. Callard (650) 969-5991 (o) dcallard@stanfordphotonics.com

Welcome to Montana!

After enjoying the sunny beaches of Florida for the past four consecutive SRBR meetings (2006–2012), the Executive Committee and I decided that it was time to experience a different environment, and therefore we've moved to the mountains for this year's SRBR meeting. And not just any mountains! I hope you've already experienced the superb scenery of Montana on your journey from the airport to the Big Sky site. If you traveled along Highway 191 from the Bozeman (or another airport), you followed the course of the Gallatin River, along which many of the scenic shots were filmed for the movie, "A River Runs Through It." As you know, we are very close to a fascinating biological/geological phenomenon, Yellowstone National Park, and I hope that you will take this opportunity to explore it if you have not done so previously. The wildlife and environment of this year's site should resonate with the biologist within all of us.

On the other hand, hopefully the grandeur of our environs will not detract from what we are REALLY here to experience, namely the terrific science that Erik Herzog and his Program Committee have organized for us. We will have the opportunity to hear the latest and greatest clock research from atomic structures to population biology, from electrophysiology to metabolism, from "Clocks in the Clinic" to clocks in a test tube, from bacteria to humans. The breadth of present-day biological clocks research is stunning, and this breadth is superbly reflected in this year's program. I have been involved in biological clock research for over 35 years, and it has been very exciting to observe how Chronobiology has reinvented itself over the years. No one could have anticipated at SRBR's first meeting in 1988 (which I attended) how our field would flourish. Clock/sleep research is now an established clinical practice, but we have also contributed watershed insights to basic neurogenetics, biochemistry, and more. Despite tough times for funding basic research worldwide, we chronobiologists continue to publish in high-visibility journals and obtain research support.

I am grateful to have been a part of Chronobiology's vibrant activity over these 35 years. The trajectory of our field's expansion confirms that Chronobiology will continue to blossom, providing fascinating puzzles to decode and challenges to surmount for the next generation of scientists. Encouraging that new generation has led "Trainee Day" to become an essential component of the SRBR meeting; this year's Trainee Day was organized by Karen Gamble and her able committee. While the most obvious contributions to the excellence of our meeting's agenda are the Program and Trainee Day Committees, in any endeavor of this magnitude, there are many other people to thank. Foremost among those are Michelle Chappell and her staff at Conference Services who ensure that our meetings run smoothly. Moreover, we are grateful to our government and corporate sponsors who–despite tough financial times–make this meeting possible.

But most important is to thank YOU, presenters and/or participants, for sharing your knowledge and passions that make our SRBR meeting a biennial success!

Carl Hirschie Johnson, SRBR President, 2012–2014

General Information

Headquarters is at the Yellowstone Conference Center, Firehole Lounge, which is conveniently located within walking distance of all hotel rooms.

SRBR Information Desk and Message Center is in the Yellowstone Conference Center, Firehole Lounge.

The desk hours are as follows:

Friday 6/13	3:00–6:00 pm	
Saturday 6/14	8:00 am-12:00 pm	2:00-8:00 pm
Sunday 6/15	7:30 am-11:30 am	4:00-6:00 pm
Monday 6/16	7:30 am-11:30 am	4:00-6:00 pm
Tuesday 6/17	8:00 am-11:30 am	4:00-6:00 pm
Wednesday 6/18	8:00 am-11:30 am	

Messages can be left on the SRBR message board next to the registration desk. Meeting participants are asked to check the message board routinely for mail, notes, and messages.

Hotel check-in will be at the individual properties.

Posters will be available for viewing in the Mountain Mall (Mammoth rooms).

Sunday, June 15, 10:00 am-10:30 pm	Poster numbers 1–109
Monday, June 16, 10:00 am–10:30 pm	Poster numbers 110–215
Tuesday, June 17, 10:00 am-10:30 pm	Poster number 216–323

Poster set up is between 8:00 and 10:00 am on the day of your poster session. Posters must be taken down at the conclusion of your poster session.

Trainees that received an Excellence Travel Award (**) or a Merit Travel Award (*) are recognized in the Program.

Lunch Time Tables We are organizing lunch tables for informal discussions of selected chronobiology topics nominated from the membership. We have arranged for a daily lunch buffet in the Huntley Dining Room at the Conference Center and have reserved tables for lunchtime chat participants.

These tables are meant to bring together researchers with common interests for informal introductions and discussions. To prepare for a lunchtime table, you could think about questions that you would like to ask or resources you would like to share with your colleagues.

Special Events

Saturday, June 14

9:00 am-5:00 PM • Trainee Professional Development Day • Yellowstone Conference Center

1:00-4:55 PM • Junior Faculty Workshops • Cheyenne

Attendance is open to investigators within ~8 years of obtaining a faculty position.

The goal of the Junior Faculty Workshops is to foster the growth and success rate of the next generation of biological rhythm researchers by learning from and interacting with established faculty members. A panel of experienced members of the field will participate in each meeting to provide tips and advice to junior faculty members and answer questions. Only those who have preregistered will be allowed to participate. A list of registered faculty will be posted on the message board in the conference center prior to the first session.

7:00-9:00 PM • Welcome Reception • Huntley Dining Room

Sunday, June 15

10:30-11:00 AM • Meet the Professors • Lake / Canyon • All trainees welcome to attend

(See "Program Overview" pages 22, 28, 34 and 40 for the list of participating professors)

Meet the Professor Sessions are meant to provide trainees (students and postdocs) the opportunity to interact with experienced faculty members in the field and to foster scholarly conversation. Each day a number of faculty researchers will be available to talk with trainees. Any trainee interested in meeting these investigators can go to the Lake/Canyon Room and take part in this informal gathering.

12:30 PM • Lunch Time Tables • Huntley Dining Room

Chronobiology education: Sharing lesson plans and teaching resources

Optogenetics of clocks: Activating and silencing clock neurons

Neurodegenerative disease and circadian clocks

8:00-8:30 PM • Data Blitz I • Madison/Gallatin

Each Datablitz will showcase the research accomplishments of the 2014 SRBR Trainee Excellence and Merit Award recipients and of other selected trainees. Each speaker will have one minute to introduce data that they will present at the poster session that evening.

8:30-10:30 PM • Poster Session I (Posters #1-109) • Mountain Mall

Monday, June 16

- 10:30–11:00 AM Meet the Professors Lake / Canyon All trainees welcome to attend
- 12:30 PM Lunch Time Tables Huntley Dining Room
 - Chronobiology advocacy: Addressing school times or daylight saving time in your neighborhood Modelers unite! How mathematical models can facilitate chronobiology
- 2:00-3:00 PM JBR Editors Meeting, SAGE Publishers Lamar / Gibbon
- 3:15-4:15 PM Workshop I Clocks in the Clinic–Should we have Chronobiology Clinics? Jefferson/Madison
- 4:30-6:30 PM Presidential Special Symposium Missouri Ballroom
- 8:00-8:30 PM Data Blitz II Madison/Gallatin
- 8:30-10:30 PM Poster Session II (110-215) Mountain Mall

Tuesday, June 17

- 10:30-11:00 AM Meet the Professors Lake / Canyon All trainees welcome to attend
- 12:30 PM Lunch Time Tables Huntley Dining Room
 - Chronobiology advocacy: Interfacing with the public (Web, blogs, media...)
 - Impact of circadian rhythms on athletic performance
- 12:45–2:45 PM SRBR Executive Committee Meeting Lamar / Gibbon
- 3:15-4:15 PM Workshop II Clocks in the Society–Is there a Best Way to Assess Chronotype? Jefferson/Madison
- 8:00-8:30 PM Data Blitz III Madison/Gallatin
- 8:30-10:30 PM Poster Session III (216-323) Mountain Mall

Wednesday, June 18

- 10:30-11:00 AM Meet the Professors Lake / Canyon All trainees welcome to attend
- 12:30 PM Lunch Time Tables Huntley Dining Room
 - Working times: Circadian insights and field study challenges
 - Chronobiology of drug addiction
- 2:30-3:30 PM Business Meeting Missouri Ballroom
- 3:30–4:30 PM Workshop III Clock Reporters–Are we Being Misled by Reporters? What Reporters do we Need? Missouri Ballroom
- 4:30-5:30 PM Pittendrigh/Aschoff Lecture Missouri Ballroom
- 5:45-6:30 PM Free Time & Cocktails (cash bar) Huntley Dining Room
- 6:30-7:30 PM Travel Awards / Entertainment / Cocktails (cash bar) Huntley Dining Room
- 7:30 PM Montana BBQ Mountain Mall
 - Guest banquet tickets need to be purchased in advance at the registration desk.

Meeting at a Glance

Saturday, June 14

9:00 AM-5:00 PM Tr	rainee Professional Develop	oment Day • Yello	owstone Conference	Center
--------------------	-----------------------------	-------------------	--------------------	--------

1:00-4:55 PM Junior Faculty Workshops • Cheyenne

7:00–9:00 PM Opening Reception • Huntley Dining Room

Sunday, June 15

8:00–10:00 AM Poster Session Setup (P1–109) • Mountain Mall

8:15–10:30 AM Symposium 1: *Cellular Metabolism* • *Jefferson*

Symposium 2: Neural Circuits I • Gallatin

Symposium 3: Daily Demands and Defenses • Madison

10:30–11:00 AM Refreshment Break • Upper Atrium

Exhibits • Lower Atrium

Meet the Professors • Lake / Canyon

11:00 AM-12:30 PM Slide Sessions

A (S1–S6) The SCN-from genes to behavior and back • Jefferson

B (S7-S12) Metabolic Regulation of and by Clocks • Madison

C (S13-S18) Clocks and Cancer • Gallatin

D (S19-S24) Clock Genomics • Amphitheatre

12:30–4:15 PM Free Time

4:15–6:30 PM Symposium 4: Entrainment I • Jefferson

Symposium 5: *New Drugs for Chronobiology* • *Gallatin*

Symposium 6: Clocks in Fitness and Aging • Madison

8:00–8:30 PM Data Blitz I • Madison/Gallatin

Monday, June 16

8:00-10:00 AM	Poster Session Setup (P110–P215) • Mountain Mall
8:15-10:30 AM	Symposium 7: Posttranscriptional Clock Mechanisms • Jefferson
	Symposium 8: Neural Circuits II: From Clocks to Sleep • Gallatin
	Symposium 9: Clocks, Cell Cycle, Growth and Differentiation • Madison
10:30-11:00 AM	Refreshment Break • Upper Atrium
	Exhibits • Lower Atrium
	Meet the Professors • Lake / Canyon
11:00 AM-12:30 PM	Slide Sessions
	E (S25-S30) Entrainment I • Jefferson
	F (S31-S36) Networked Clocks • Madison
	G (S37-S42) Sleep and Wake • Gallatin
	H (S43-S48) Clocks and Immune Function • Amphitheatre
12:30-3:00 PM	Free Time
2:00-3:00 PM	JBR Editors Meeting, SAGE Publishers • Lamar / Gibbon
3:00-4:00 PM	Workshop I • Clocks in the Clinic–Should we have Chronobiology Clinics? • Jefferson/Madison
4:30-6:30 PM	Presidential Special Symposium • Missouri Ballroom
8:00-8:30 PM	Data Blitz II • Madison/Gallatin
8:30-10:30 PM	Poster Session II (P110–215) • Mountain Mall
	Tuesday, June 17
8:00-10:00 AM	Poster Session Setup (P216–P323) • Mountain Mall
8:15-10:30 AM	Symposium 10: Entrainment II • Jefferson
	Symposium 11: Convergent Roles for Clocks and Sleep • Madison Supported, in part, by TEVA
	Symposium 12: Period, Precision and Amplitude • Gallatin
10:30-11:00 AM	Refreshment Break • Upper Atrium
	Exhibits • Lower Atrium
	Meet the Professors • Lake / Canyon
11:00AM-12:30 PM	Slide Sessions
	I (S49-S54) Fly Clocks • Jefferson
	1/055 000) 5 1/05-1 - 1/05-1 - 1/11/

J (S55-S60) Fungal Clocks • Amphitheatre

	L (S67-S72) Entrainment II • Gallatin
12:30-3:15 PM	Free Time
12:45-2:45 PM	SRBR Executive Committee Meeting • Lamar / Gibbon
3:15-4:15 PM	Workshop II • Clocks in the Society–Is there a Best Way to Assess Chronotype? • Jefferson/Madison
4:15-6:30 PM	Symposium 13: Metabolism II • Jefferson
	Symposium 14: Circadian Neurodegeneration • Gallatin
	Symposium 15: Circadian Clock Structures • Madison
8:00-8:30 PM	Data Blitz III • Madison/Gallatin
8:30-10:30 PM	Poster Session III (P216-P323) • Mountain Mall
	Wednesday, June 18
8:15-10:30 AM	Symposium 16: Consequences of Circadian Disruption • Jefferson
	Symposium 17: Neural Circuits III • Gallatin
	Symposium 18: Clocks in the Wild • Madison
10:30-11:00 AM	Refreshment Break • Upper Atrium
	Exhibits • Lower Atrium
	Meet the Professors • Lake / Canyon
11:00 AM-12:30 PM	Slide Sessions
	M (S73-S79) Green Clocks • Amphitheatre
	N (S80-S85) Human Clocks • Jefferson
	O (S86-S91) Ontogeny of Clocks • Madison
	P (S92-S97) Fish Clocks • Gallatin
12:30-2:30 PM	Free Time
2:30-3:30 PM	Business Meeting • Missouri Ballroom
3:30-4:30 PM	Workshop III • Clock Reporters-Are we Being Misled by Reporters? What Reporters do we Need? • Missouri Ballroom
4:30-5:30 PM	Pittendrigh/Aschoff Lecture • Missouri Ballroom
5:45-6:45 PM	Free Time & Cocktails (cash bar) • Huntley Dining Room
6:45-7:30 PM	Travel Awards / Entertainment / Cocktails (cash bar) • Huntley Dining Room
7:30 РМ	Montana BBQ • Mountain Mall

K (S61-S66) Clocks and Feeding • Madison

Trainee Professional Development Day

Saturday, June 14

The Trainee Professional Development Day is an entire day devoted to scientific and career development activities for trainees. The day consists of a keynote address, an activity consisting of one-on-one blitz discussions, and a series of workshops on various topics. The goal of the Trainee Professional Development Day is to allow the next generation of biological rhythm researchers to learn from and interact with faculty members in a more informal and intimate setting than that allowed by the main conference.

Only those who have pre-registered will be allowed to participate. Registered trainees should attend the workshops they selected when registering. This information will be posted on the message board in the conference center prior to the first session.

9:00–9:20 AM Welcome and Orientation • Jefferson/Madison

Karen Gamble, University of Alabama at Birmingham

Carl H. Johnson, Vanderbilt University

9:20–10:20 AM **Keynote Address •** Jefferson/Madison

Michael H. Hastings, MRC Laboratory of Molecular Biology

10:35–11:25 AM **Session 1**

Developing and Maintaining Records of Research Performance + Interview Skills • Dunraven/Obsidian

John O'Neill, MRC Laboratory of Molecular Biology

Eric Mintz, Kent State University

This workshop will cover some key ways to market yourself effectively, including how to create and maintain a strong CV, record academic performance and outreach activities, use of professional social media and how to make a great impression at interviews.

Post-doc Training: Choosing the Right Place and Environment to Achieve Your Goals • Gallatin

Christine Merlin, Texas A&M University

Rae Silver, Columbia University

This workshop will discuss how to examine and select a research laboratory and the appropriate mentor for postdoctoral training: (a) how to contact the prospective mentor, (b) consider productivity and funding of a laboratory, and (c) the purpose of postdoctoral training. Options of switching research area and the choice of a good scientific field will also be addressed.

Indicates workshops delivered twice

The Transition from Postdoc to Independent Research • Lake/Canyon

Joanna Chiu, University of California, Davis

Valerie Mongrain, Université de Montréal

This workshop will discuss the following questions: 1) How do you prepare for the smoothest transition between postdoc and independent research positions? Grants and laboratory organization will be introduced. 2) What are the crucial steps to initiate an independent project and how do you prepare for it?

① Current Theory of Genetic/Molecular Feedback Mechanisms • Lamar/Gibbon Nicolas Cermakian, McGill University

This 50-min workshop will give an overview of the up-to-date model of "transcriptional/translational feedback loops" in cellular clocks and review major discoveries that lead to the formation of this model. Focus will be placed on the mammalian system but a brief comparison with the Drosophila system will also be included.

Basics of Chronobiology • Amphitheatre

Mike Menaker, University of Virginia

Confused about CTs and ZTs? Unsure of the difference between Ts and τ s? In this workshop we will explore and discuss some of the fundamental principles of chronobiology, including entrainment, temperature compensation, masking, and free-running rhythms. A great place to start if you're new to the field.

11:45–12:35 PM **Session 2**

How to Get the Best Out of Your Supervisor and Mentors • Dunraven/Obsidian

Christopher Colwell, University of California, Los Angeles

Diane Boivin, McGill University

A good relationship with those around you is crucial to maintain a productive working environment. This workshop will cover the importance of good mentoring, help you identify responsibilities of both mentors and trainees, and discuss how to deal with problems in the mentor-trainee relationship from both angles.

Grantsmanship: Do's and Don'ts in Grant Writing • Gallatin

Doug McMahon, Vanderbilt University

Learn the ropes of how to write a competitive grant. Special attention will be paid to the specific aims page, presentation of rationale, results, and alternative interpretations, and development of a training timeline.

1 Imaging of Luminescent and Fluorescent Reporter Models • Lamar/Gibbon

David Welsh, University of California, San Diego

This workshop will introduce experimental methods and theory of imaging of luminescence and fluorescent reporter models. Circadian research often takes advantage of imaging techniques to monitor circadian rhythms over many cycles. The microscope settings, cameras, and reagents will be presented. How such technology can be applied to the field of chronobiology will also be described.

① Statistical Methods for Time Series Analysis of Rhythms • Lake/Canyon

Horacio de la Iglesias, University of Washington

Ken Wright, University of Colorado

Analyses of time-series data sets, as frequently required in chronobiological research, can be a daunting task. This workshop will cover various methods that can be used to detect and analyze periodic patterns in biological time-series data (e.g. rhythmicity, period, amplitude, phase, phase shifts), sketch their strengths and limitations as well as provide an overview of available software useful for such analyses.

Entrainment of the Circadian Clock • Amphitheatre

Ralph Mistlberger, Simon Fraser University

This 50-min workshop will introduce the basic concepts and theories of entrainment of the circadian clock as well as the methodology that are commonly used to study entrainment in rodents and flies. It will mainly include two parts: photic entrainment and food entrainment. Focus will be placed on the general principles rather than detailed techniques.

12:40-1:40 PM

Lunch • Jefferson/Madison

1:45-2:40 PM

Positive Feedback Looping • Jefferson/Madison

This activity will consist of random one-on-one blitz discussions. Participants are asked to pair randomly and discuss for 7 minutes, after which they are asked to pair with another participant, and so on, for ~50 min. The aim of this activity is to stimulate interaction and exchanges, to allow participants to meet new people, and to "break the ice" before the SRBR conference starts.

3:00-3:50 PM

Session 3

Work in the Industry and Other Non-Academic Settings as an Alternative Career • Amphitheatre

Michael Sesma, NIH, National Institute of General Medical Sciences

Chris Steele, Program Officer at U.S. Office of Naval Research

This workshop will give on overview of working in the industry following completion of your graduate/postdoc work, and a comparison of research in an industry situation vs. an academic situation. In addition, insights into the work in a non-profit research institute will be provided in contrast to the industry and academia background.

① Current Theory of Genetic/Molecular Feedback Mechanisms • Lamar/Gibbon

Nicolas Cermakian, McGill University

This 50-min workshop will give an overview of the up-to-date model of "transcriptional/translational feedback loops" in cellular clocks and review major discoveries that lead to the formation of this model. Focus will be placed on the mammalian system but a brief comparison with the Drosophila system will also be included.

Asking the Right Questions & Designing the Right Experiments in a Biological Rhythms Project • Gallatin

Till Roenneberg, Ludwig-Maximilians University

This workshop will focus on optimizing experimental design to fit a hypothesis pertinent to rhythms research. Discussion on selecting the most appropriate controls, lighting conditions (light-dark cycle vs. skeleton photoperiod vs constant conditions), the number of time points, and the means of measurement (behavioral vs physiological vs molecular) will take place.

Circadian Physiological and Behavioral Methods in Flies • Obsidian/Dunraven

Alex Keene, University of Nevada

Amita Sehgal, University of Pennsylvania

This 50-min workshop will introduce experimental methods for monitoring circadian rhythms in Drosophila melanogaster. Commonly used physiological and behavioral parameters will be reviewed and experimental protocols will be discussed.

Circadian Physiological and Behavioral Methods in Rodents • Lake/Canyon

Urs Albrecht, University of Fribourg

This workshop will describe experimental setups for the monitoring of circadian physiology in rodent models (mouse, rat, hamster, and diurnal rodents). Basic physiological and behavioral parameters and underlying protocols will be presented and discussed.

4:10-5:00 PM **Session 4**

Making Effective Scientific Presentations • Dunraven/Obsidian

Martha Gillette, University of Illinois at Urbana-Champaign

Presenting scientific data well can be difficult and daunting, but this workshop will cover some key points to consider in order to improve your skills. From planning the content and structure to the delivery itself, including use of technology, humour & anecdotes, how to adapt to your audience and coping with difficult questions, this workshop should leave you more confident in your ability to present your data effectively.

① Statistical Methods for Time Series Analysis of Rhythms • Lake/Canyon

Horacio de la Iglesias, University of Washington

Ken Wright, University of Colorado

Analyses of time-series data sets, as frequently required in chronobiological research, can be a daunting task. This workshop will cover various methods that can be used to detect and analyze periodic patterns in biological time-series data (e.g. rhythmicity, period, amplitude, phase, phase shifts), sketch their strengths and limitations as well as provide an overview of available software useful for such analyses.

① Imaging of Luminescent and Fluorescent Reporter Models • Lamar/Gibbon

David Welsh, University of California, San Diego

This workshop will introduce experimental methods and theory of imaging of luminescence and fluorescent reporter models. Circadian research often takes advantage of imaging techniques to monitor circadian rhythms over many cycles. The microscope settings, cameras, and reagents will be presented. How such technology can be applied to the field of chronobiology will also be described.

Basic Methodology to Study Human Circadian Rhythms • Gallatin

Debra Skene, University of Surrey

The field of human chronobiology is continually growing. This workshop is geared toward those new to or not familiar with human chronobiology studies, and will provide an overview of the experimental paradigms and techniques currently used to investigate circadian rhythms in humans.

Translational Chronobiology • Amphitheatre

Steven Brown, University of Zurich

Phyllis Zee, Northwestern University

How, where and when does basic chronobiological research translate to the clinic and everyday life? This workshop will strive to provide an overview as well as several in-depth examples of current applications of chronobiology in human well-being and disease.

5:00 PM Conclusion of Trainee Professional Development Day

Indicates workshops delivered twice

Junior Faculty Workshops

Saturday, June 14

The goal of the Junior Faculty Workshops is to foster the growth and success rate of the next generation of biological rhythm researchers by learning from and interacting with established faculty members in a more informal and intimate setting than that allowed by the main conference. A panel of experienced members of the field will participate in each meeting, to provide tips and advice to junior faculty members and answer questions.

Attendance is open to investigators within ~8 years of obtaining a faculty position.

1:00–2:00 PM • Workshop 1 • Cheyenne

Leading your Lab: Mentoring, Management, Organization, Personnel

Jeanne Duffy, Harvard Medical School

Horacio de la Iglesias, University of Washington

Bambos Kyriacou, University of Leicester

2:20–3:20 PM • Workshop 2 • Cheyenne

Securing Research Funding: Agencies, Industry, Foundations

Andrew Loudon, University of Manchester

Samer Hattar, The Johns Hopkins University

Erik Herzog, Washington University in St. Louis

Takashi Yoshimura, Nagoya University

3:40−4:40 PM • **Workshop 3** • *Cheyenne*

Short-Term and Long-Term Research Program Planning

Rob Lucas, University of Manchester

Mary Harrington, Smith College

Elizabeth Klerman, Harvard Medical School

SRBR 2014 Program Overview

Saturday, June 14

9:00 AM-5:00 PM	Trainee Professional Development Day • Yellowstone Conference Center		
1:00-5:00 PM	Junior Faculty Workshop • Cheyenne		
7:00-9:00 PM	Openi	ng Reception • Huntley Dining Room	
		Sunday, June 15	
8: 15–10:30 AM	Symposium 1: Cellular Metabolism • Jefferson Chair: Amita Sehgal, University of Pennsylvania		
	8:15	Introduction	
	8:30	Nutrition, epigenetics and the clock Paolo Sassone-Corsi, University of California, Irvine	
	9:00	Bioenergetic mechanisms of molecular clock regulation Joseph Bass, Northwestern University	
	9:30	Diurnal rhythms of physiology and metabolism in cyanobacteria Susan Golden, University of California–San Diego	
	10:00	New inter- and intracellular regulations of the circadian pacemaker Hitoshi Okamura, Kyoto University	
		osium 2: Neural Circuits I: Networked Clocks • Gallatin Elizabeth Maywood, MRC-Laboratory of Molecular Biology	
	8:15	Introduction	
	8:30	Do glia shape SCN circuits? Martha Gillette, University of Illinois at Urbana-Champaign	
	9:00	dTRPA1 for temperature entrainment: Lab vs nature Vasu Sheeba, Jawaharlal Nehru Centre for Advanced Scientific Research	
	9:30	The SCN—an adaptive system of coupled oscillators Hans-Peter Herzel, Institute for Theoretical Biology	
	10:00	Beyond Transcription: Identification of Novel Biophysical Mechanisms that Generate Daily Differences in SCN BK currents Andrea Meredith, University of Maryland School of Medicine	

Symposium 3: Daily Demands and Defenses • Madison

Chair: Takato Imaizumi, University of Washington

- 8:15 Introduction
- 8:30 Molecular clocks in adaptation: from homeorhetic to acute inflammatory response

Marina Antoch, Roswell Park Cancer Institute

- 9:00 The interplay between the circadian clock and plant immunity Xinnian Dong, Duke University
- 9:30 Contribution of interlocked feedback loops to circadian timekeeping and output

Paul Hardin, Texas A & M University

10:00 *Circadian macrophage immunity*Bert Maier, Charité Universitätsmedizin Berlin

10:30–11:00 AM Refreshment Break • Upper Atrium

Exhibits • Lower Atrium

Meet the Professors • Lake / Canyon

Carl Johnson (Cyanobacteria, mammals, clock genes)

Ken Wright (humans, shift-work, metabolism, sleep)

Paolo Sassone-Corsi (rodents, clock genes, metabolism, epigenetics)

Carolina Escobar (rodents, food entrainment, behavior, circadian desynchrony)

Steven Brown (rodents, human peripheral clocks, clock genes)

Martha Gillette (rodents, SCN, signaling/plasticity, coupling peptides)

Michael H. Hastings (rodents, SCN, molecular mechanisms)

11:00 AM-12:30 PM Slide Session A • The SCN-from genes to behavior and back • Jefferson

Chair: Hai-Ying Mary Cheng, University of Toronto Mississauga

11:00 S1 • Linking Molecular, Electrical, and Behavioral Rhythms in the Brain's Biological Clock

*Jeff Jones, Vanderbilt University

11:15 **S2 • One channel to entrain them all: GIRK channels mediate multiple** time-of-day cues

*Lauren Hablitz, University of Alabama at Birmingham

- 11:30 **S3 A non-conventional nuclear import pathway** Sandra Korge, Charité-Universitätsmedizin Berlin
- 11:45 **S4** On the relationship between a central clock and peripheral clocks Mariko Izumo, UT Southwestern Medical Center
- 12:00 **S5 Feedback actions of exercise on the suprachiasmatic nuclei and circadian system**

Alun Hughes, University of Manchester

12:15 **S6 • Short-circuit: A circadian mutant in a novel suprachiasmatic nucleus transcription factor**

Michael Parsons, MRC Harwell

11:00 AM-12:30 PM Slide Session B • Metabolic Regulation of and by Clocks • Madison

Chair: Karyn Esser, University of Kentucky

- 11:00 **S7 Diurnal variation of drug transport in the central nervous system** *Laura Kervezee, Leiden University Medical Center
- 11:15 **S8 Metabolic modulation of circadian transcriptional oscillations** **Guillaume Rey, University of Cambridge
- 11:30 S9 A transcriptional metabolic sensor for studying dynamics of NADH/ NAD+ redox homeostasis in mammalian cells Guocun Huang, Soochow University
- 11:45 **S10 Rev-erb**\alpha is a critical regulator of feeding behaviour and adaptive thermogenesis

Peter Cunningham, University of Manchester

- 12:00 S11 Circadian and metabolic changes associated with seasonal physiological states in a night-migratory songbird, the blackheaded bunting (Emberiza melanocephala)

 *Devraj Singh, McGill University
- 12:15 **S12 Mathematical modeling and experimental validation of glucose** and temperature compensation in the Neurospora circadian clock
 Andrey Dovzhenok, University of Cincinnati

11:00 AM-12:30 PM Slide Session C • Clocks and Cancer • Gallatin

Chair: Nicolas Cermakian, McGill University

11:00 **S13 • Circadian Homeostasis of Liver Metabolism Suppresses Tumorigenesis**

Nicole Kettner, Baylor College of Medicine

- 11:15 **S14 DNA damage drives Cry1/2 posttranslational modification**Katja Lamia, The Scripps Research Institute
- 11:30 S15 The circadian clock in B16 melanoma cells controls their proliferation
 Silke Kiessling, McGill University / Douglas Mental Health University
- 11:45 **S16 The Circadian Factor Period 2 Modulates p53 Stability and Function** *in DNA-Damage Signaling*Carla Finkielstein, Virginia Tech
- 12:00 **S17 Phase-locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle**Celine Feillet, CNRS/INSERM/Université Nice
- 12:15 **S18 Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells**Rosamaria Cannavo, Ecole Polytechnique Fédérale de Lausanne

11:00 AM-12:30 PM Slide Session D • Clock Genomics • Amphitheatre

Chair: Jason DeBruyne, Morehouse School of Medicine

- 11:00 **S19 Genome-wide characterization of the molecular response of the circadian clockwork to temperature in Drosophila**Naveh Evantal, Hebrew University of Jerusalem
- 11:15 **S20 Rhythmic degradation explains and unifies circadian transcriptome** and proteome data

Sarah Lueck, Charite-Universitatsmedizin Berlin

- 11:30 **S21 RNA methylation shows its mettle** Jean-Michel Fustin, Kyoto University
- 11:45 **S22 A Licensing Mechanism in the Mammalian Circadian Clock** Feedback Loop

Alfred G. Tamayo, Harvard Medical School

- 12:00 **S23 CLOCK is not required for peripheral circadian oscillators** *Dominic Landgraf, UCSD
- 12:15 **S24 Transcriptional regulation mechanisms that allow clocks in higher organisms to tick and synchronize**Jae Kyoung Kim, The Ohio State University

12:30–4:15 PM Free Time

12:30 PM Lunch Time Tables • Huntley Dining Room

Chronobiology education: Sharing lesson plans and teaching resources

Optogenetics of clocks: Activating and silencing clock neurons

Neurodegenerative disease and circadian clocks

4:15–6:30 PM Symposium 4: Entrainment I • Jefferson

Chair: Samer Hattar, Johns Hopkins University

- 4:15 Introduction
- 4:30 The building blocks of entrainment: properties of cellular circadian synchronisation

Martha Merrow, University of Munich

5:00 Timing plant defense: Attention herbivores

Janet Braam, Rice University

- 5:30 Entrainment of the human circadian clock
 - Kenneth Wright, University of Colorado
- 6:00 Timing takes teamwork: Chaperones and co-chaperones in the plant circadian system

Dave Somers, Ohio State University

Symposium 5: New Drugs for Chronobiology • Gallatin

Chair: Andrew Loudon, University of Manchester

- 4:15 Introduction
- 4:30 *Casein Kinase 1 Inhibitors (CK1i): Circadian Rhythm Disorders*Travis Wager, Pfizer
- 5:00 Finding specific ligands for REVERB and using them to regulate inflammation

David Ray, University of Manchester

- 5:30 **Small molecule modulators for clock biology and disease** Zheng (Jake) Chen, UT Health Science Center at Houston
- 6:00 **Small molecule antagonist of melanopsin function**Satchin Panda, Salk Institute for Biological Studies

Symposium 6: Clocks in Fitness and Aging • Madison

Chair: Johanna Meijer, Leiden University

- 4:15 Introduction
- 4:30 Aging of the central circadian clock in mammals
 Stephan Michel, Leiden University Medical Center
- 5:00 *Multiscale influences of circadian regulation on physiology and behavior* Kun Hu, Brigham & Women's Hospital/Harvard Medical School
- 5:30 Interaction between aging and the circadian and sleep homeostatic systems in Drosophila
 Amita Sehgal, University of Pennsylvania
- 6:00 Hypothalamic regulation of physiological rhythm, aging, and longevity in mammals

Shin-ichiro Imai, Washington University in St. Louis

8:00–8:30 PM Datablitz I • Madison / Gallatin

Chair: Roelof Hut, University of Groningen

Excellence Award recipients are indicated with ** before their name and Merit Award recipient names are preceded with *.

Light-regulated blood-feeding and flight activity behavior and a light phase response curve for the Anopheles gambiae malaria mosquito

*Aaron Sheppard

Physical and psychological stress as potent synchronizers of mouse peripheral circadian clocks

*Yu Tahara

Trypanosoma brucei accelerates the mouse circadian clock

*Filipa Rijo-Ferreira

Phase-mapping the mouse brain with a CRY1::mCherry fluorescent reporter
Arthur Millius

Characterising of the role of Cryptochromes in Retinal Responses to Light *Jovi Chau-YeeWong

Altered cryptochrome degradation influences GABAergic signaling and excitation of suprachiasmatic nucleus neurons

Sven Wegner

Roles of C-terminal truncated Bmal1 on circadian rhythm

Noheon Park

A slow conformational change in the C-terminus of BMAL1 modulates binding to transcriptional coactivators

*Chelsea Gustafson

Structure/function interrogation of mCRY1 defines a distributed binding interface with the CLOCK/BMAL1 heterodimer

*Clark Rosensweig

Development of circadian pacemaker cells in the Drosophila brain Tianxin Liu

ipRGC neurotransmitters, glutamate and PACAP, are distinct in their contributions to non-image forming behaviors

*William Keenan

Perinatal photoperiod affects the serotonergic system

*Noah Green

Association of Depression with Variations of Melatonin and Cortisol Rhythms in Delayed Phase Sleep Disorder (DSPD) Patients

Seong Jae Kim

Circadian abnormalities in the Myshkin mouse model of mania *Joseph Timothy

Brain circadian clocks in a mouse model of depressionDominc Landgraf

Genome-wide analysis of circadian clock properties in human fibroblasts *Ludmila Gaspar

The circadian clock in the Antarctic krill Euphausia superba *Benjamin Hunt

Sustained inhibition of Na+/K+/Cl- co-transporter 1 (NKCC1) enhances the magnitude of light-induced phase delays of the circadian clock *John McNeill

Clock Silencing in Adulthood Impairs Rhythmic Insulin Release and Reprograms Protein Secretion Transcription Networks

Mark Perelis

Circadian clocks and Polyamines—a metabolic feedback loop *Ziv Zwighaft

Food-entrainable circadian oscillations of PER2:LUC in the mouse olfactory bulb: critical role for olfactory input

Ilya Pavlovski

Circadian properties of food-anticipatory activity re-examined: entrainment limits and scalar timing in operant and general activity

*Christian Petersen

MicroRNAs cooperate with rhythmic transcription to shape circadian gene expression

*Ngoc-Hien Du

New insight into post-transcriptional regulation of circadian rhythms using a system wide identification of RNA-binding proteins

Pauline Gosselin

Drosophila mechanosensory organs and Ionotopic Receptors (IRs) contribute to clock synchronization by temperature cycles and proprioceptive feedback *Chenghao Chen

8:30–10:30 PM Poster Session I (P1–109) • Mountain Mall

Monday, June 16, 2014

8:15-10:30 AM Symposium 7: Posttranslational Clock Mechanisms • Jefferson Chair: Carla Green, UT Southwestern Medical Center 8:15 Introduction Circadian rhythms are turning heads: clock regulation of solar tracking 8:30 in sunflower Stacey Harmer, University of California, Davis Post-transcriptional regulation in the Drosophila circadian pacemaker 9:00 Patrick Emery, University of Massachusetts Medical School 9:30 Posttranscriptional control of circadian dynamics in mammals Achim Kramer, Charité Universitätsmedizin Berlin 10:00 Sense and antisense, the Yin and Yang of circadian gene expression Yi Liu, UT Southwestern Medical Center

Symposium 8: Neural circuits II: From Clocks to Sleep • Gallatin

Chair: Michael Nitabach, Yale School of Medicine

- 8:15 Introduction
- 8:30 **Regulation of sleep by microRNAs in Drosophila**Leslie Griffith, Brandeis University
- 9:00 Melatonin is required for the circadian regulation of sleep but not for circadian rhythms

David Prober, California Institute of Technology

- 9:30 WIDE AWAKE Mediates the Circadian Timing of Sleep Onset Mark Wu, Johns Hopkins University
- 10:00 **Neuropeptides regulating C. elegans sleep**David Raizen, University of Pennsylvania

Symposium 9: Clocks, Cell Cycle, Growth and Differentiation • Madison

Chair: Kazuhiro Yagita, Kyoto Prefectural University of Medicine

- 8:15 Introduction
- 8:30 Timing the cell cycle in zebrafish larvae and cell lines
 David Whitmore, University College London
- 9:00 Plasticity in time: pathways from the environment to the clock, and from the clock to the maturing brain
 Steve Brown, University of Zurich
- 9:30 Systematic analysis of the role of core clock genes in cancer cells Gijsbertus Van derHorst, Erasmus University Medical Center
- 10:00 *Circadian Clock Control of MAPK Activation*Deborah Bell-Pedersen, Texas A & M University

10:30–11:00 AM Refreshment Break • Upper Atrium

Exhibits • Lower Atrium

Meet the Professors • Lake / Canyon

Johanna Meijer (mice, SCN, light, work/life balance)

Martha Merrow (entrainment and rhythms in humans, research transitions to Europe, Neurospora)

Michael Rosbash (Drosophila, clock genes, genetics)

Christopher Colwell (rodents, neurodegenerative disorder, physiology)

David Welsh (single cells, SCN, neuronal circuits, rodents)

Debra Skene (humans, aging, treatment of circadian disruption, light, melatonin)

Jay Dunlap (Neurospora, circadian output, transcriptional regulation)

Horacio de la Iglesia (mammals, crustaceans, SCN, circadian and circatidal rhythms)

11:00 AM-12:30 PM Slide Session E • Entrainment I • Jefferson

Chair: Howard Cooper, INSERM

- 11:00 **S25 The retinal circadian clock entrains to light: Dark cycles in the absence of rods, cones, and melanopsin**Ethan Buhr1, University of Washington
- 11:15 **S26 Multiple functional retinal circuits drive circadian** photoentrainment

**Melissa Simmonds, Johns Hopkins University

11:30 **S27 • Colour-opponent twilight coding regulates the mammalian** circadian clock

Timothy Brown, University of Manchester

11:45 S28 • Twilight and intensity effects of light entrainment on circadian amplitude in melatonin proficient Per2::Luc mice
Sjaak (J.) Riede, University of Groningen

- 12:00 **S29 Caffeine enhances light responsiveness of the circadian pacemaker** **Hester van Diepen, Leiden University Medical Center
- 12:15 **S30 Importance of CIRP in the synchronization of circadian liver gene** expression

Flore Sinturel, University of Geneva

11:00 AM-12:30 PM Slide Session F • Networked Clocks • Madison

Chair: Shelley Tischkau, Southern Illinois University School of Medicine

11:00 S31 • Circadian gating of neuronal functionality: A basis for iterative metaplasticity

Martha Gillette, University of Illinois at Urbana-Champaign

11:15 S32 • Differential Rhythmicity: How to confidently detect changes in rhythmicity

Paul Thaben, Charite-Universitatsmedizin Berlin

- 11:30 S33 Channelrhodopsin-2 assisted circuit mapping of functional GABAergic input originating from VIP-expressing neurons

 Junmei Fan, University of Texas Southwestern Medical Center
- 11:45 S34 Amplitude metrics for uncoupled cellular circadian bioluminescence reporters

 *Peter St. John, UC Santa Barbara
- 12:00 **S35 The many roles of VIP and GABA signaling in regulating circadian** rhythms in the SCN

**Daniel DeWoskin, University of Michigan

12:15 **S36 • The SCN as the Brain's Clock, Filter and Prognosticator**Rae Silver, Columbia University

11:00 AM-12:30 PM Slide Session G • Sleep and Wake • Gallatin

Supported, in part, by Vanda Pharmaceuticals Chair: Norman "Bud" Ruby, Stanford University

- 11:00 **S37 Cortical excitability depends on time awake and circadian phase** Gilles Vandewalle, University of Liège
- 11:15 S38 ROGDI is a Novel Negative Regulator in Dopamine Signaling to Promote Sleep in Drosophila
 Chunghun Lim, UNIST
- 11:30 **S39 A role for a dopaminergic ultradian oscillator in arousal regulation** Kai-Florian Storch, McGill University
- 11:45 **S40 The circadian system sets the temporal organization of basic** human neuronal function
 Sarah Chellapa, University of Liège
- 12:00 **S41 Effect of sleep and sleep deprivation on the human metabolic** profile

Debra Skene, University of Surrey

12:15 **S42 • Bmal1 overexpression in skeletal muscle has sleep-dependent** influences on metabolic processes
Allison Brager, Morehouse School of Medicine

11:00 AM-12:30 PM Slide Session H • Clocks and Immune Function • Amphitheatre

Chair: Luciano Marpegan, Universidad Nacional de Quilmes

- 11:00 S43 When two clocks collide: Characterization of a circadian clock in the necrotrophic fungus Botrytis cinerea and its role in pathogenesis using Arabidopsis thaliana as a plant model

 Luis Larrondo, Pontificia Universidad Católica de Chile
- 11:15 S44 Circadian resonance between adrenal glucocorticoid signals and the target cell clock is essential for normal immunological responses

 *Louise Kearney, University of Manchester
- 11:30 **S45 ViriOn Time: Interactions between the circadian clock and viral infection**

*Rachel Edgar, University of Cambridge

- 11:45 S46 Short Term Disruption of Diurnal Rhythms Following Murine Myocardial Infarction (Heart Attack) Adversely Affects Long Term Myocardial Structure and Function

 Tami Martino, University of Guelph
- 12:00 S47 Melatonin secretion is severely disrupted during frequent shifts of the light and dark cycle

 Jimo Borjigin, University of Michigan
- 12:15 S48 Regulation of NCC and the WNK cascade by the circadian clock protein Per1 in murine distal convoluted tubule cells

 Michelle Gumz, University of Florida

12:30-3:15 PM Free Time

12:30 PM Lunch Time Tables • Huntley Dining Room

Chronobiology advocacy: Addressing school times or daylight saving time in your neighborhood

Modelers unite! How mathematical models can facilitate chronobiology

2:00–3:00 PM Editors Meeting, SAGE Publishers • Lamar / Gibbon

3:15–4:15 PM Workshop I: Clocks in the Clinic: Should we have Chronobiology Clinics? • Jefferson / Madison

Chairs: Debra Skene, University of Surrey and Joseph Bass, Northwestern University

Discussants: Phyllis Zee, Northwestern University, Louis Ptacek, University of California, San Francisco and HHMI, Charles Czeisler, Brigham and Women's Hospital, Harvard Medical School

4:30–6:30 PM Presidential Symposium • Missouri Ballroom

Till Roenneberg, Ludwig Maximilians University of Munich, Germany Sato Honma, Hokkaido University Graduate School of Medicine, Japan Charalambos (Bambos) Kyriacou, University of Leicester, U.K. 8:00-8:30 PM

Datablitz II • Madison / Gallatin

Chair: Debra Skene, University of Surrey

Excellence Award recipients are indicated with ** before their name and Merit Award recipient names are preceded with *.

Bifurcated rhythms lead to rapid circadian re-entrainment after simulated travel to anti-meridian time zones in mice

*Elizabeth Harrison

Overnight bright light accelerates re-entrainment to a 6h LD shift in per2:luc mice: photic, nonphotic and rhythm amplitude correlates

*Curtis Hazelwood

Morning and Evening oscillators cooperate to reset circadian behavior in response to light input

*Pallavi Lamba

Delineating the dopaminergic ultradian oscillator

*lan Blum

CREB co-activator CRTC regulates the circadian clock in Drosophila melanogaster

*Minkyung Kim

The co-repressor RCO-1 modulates circadian gene expression in Neurospora crassa

*Consuelo Olivares-Yañez

Identification and characterization of phosphatases that regulate the pace of the Drosophila circadian oscillator

*Parul Agrawal

Modeling the circadian oscillator protein network in Drosophila melanogaster Vu Lam

Melatonin as a phase marker in 187 subjects: which method works best? *Emma Wams

Marked attenuation of circadian food-anticipatory activity in dopamine receptor 1 knockout mice

*Mateusz Michalik

Non-image forming temporal integration of ultra-short flashes of light *Raymond Najjar

Controlling access time to high fat diet during inactive period protects against obesity and abnormal phase-shift of peripheral clock in mice

*Atsushi Haraguchi

AhR +/- mice are protected from the harmful metabolic consequences of circadian disruption induced by shift work and high fat diet

*Cassie Jaeger

Unveiling novel transcriptional networks behind the circadian clock of Neurospora crassa

*Felipe Muñoz-Guzmán

Daytime circadian food anticipatory activity is associated with suppression of SCN multiple unit activity and c-Fos expression in mice

**Teresa Dattolo

The Drosophila Brahma chromatin remodeling complex and its role in regulating circadian transcription: uncovering regulatory events at the per promoter *Rosanna Kwok

Orchestrated Signal Transduction Unites Mammalian Circadian Metabolism across Tissues

*Heather Ballance

Rhythmic glycogen synthase kinase 3-beta (GSK3β) inactivation regulates longterm potentiation and the molecular circadian clock period in the hippocampus *Rachel Besing

Grades, sex, and seasons: diagnostics from 1,000+ student sleep logs
*Benjamin Smarr

Normal sleep architecture is critical for memory consolidation in hippocampusmediated tasks but not in amygdala-dependent tasks

*ÄngelaKatsuyama

Impact of irregularity of sleep-wake schedules on circadian phase and amplitude in college undergraduates

*William Clerx

Repetitive firing rates are higher in Vasoactive Intestinal Peptide- (VIP-) expressing neurons during the day and night, driving coordinated electrical activity in the suprachiasmatic nucleus

*Tracey Hermanstyne

Photic entrainment and SCN neuronal excitability are modulated by glycogen synthase kinase 3 (GSK3)

*Jodi Paul

How does neuronal activity regulate gene expression in the circadian clock? *Zhonghua Zhu

Optogenetic stimulation of SCN organotypic slices phase-shifts molecular circadian rhythms

*Mathew Edwards

Is activation of VIP Neurons in mammalian SCN sufficient to drive circadian rhythms in behavior?

**Cristina Mazuski

Neonicotinoid pesticide disrupts circadian locomotor behavior in Drosophila *Michael Tackenberg

Diurnal and dopaminergic modulation of sleep-like oscillations in the striatum and cerebellum of the anesthetized rat

Ariana Frederick

8:30–10:30 PM Poster Session II (P110–215) • Mountain Mall

Tuesday, June 17

8:15–10:30 AM		Symposium 10: Entrainment II • Jefferson Chair: Ying-Hui Fu, UCSF		
	8:15	Introduction		
	8:30	Evolution and origin of vertebrate seasonal sensor Takashi Yoshimura, Nagoya University		
	9:00	Circadian rhythm of temperature preference and its neural control in Drosophila Fumika Hamada, Cincinnati Children's Hospital Medical Center		
	9:30	Familial Advanced Sleep Phase: Searching for genes that alter entrainment and output coupling Louis Ptacek, UCSF/HHMI		
	10:00	Circadian visual illusions(?): Light influences on SCN activity other than irradiance Rob Lucas, University of Manchester		
	Suppo	Symposium 11: Convergent Roles for Clocks and Sleep • Madison Supported, in part, by TEVA Chair: Ketema Paul, Morehouse School of Medicine		
	8:15	Introduction		
	8:30	Understanding how and why sleep promotes brain plasticity Sara Aton, University of Michigan, Ann Arbor		
	9:00	Sleep quality time and memory Horacio de la Iglesia, University of Washington		
	9:30	Untangling the effects of circadian misalignment and insufficient sleep in humans Elizabeth Klerman, Brigham and Women's Hospital, Inc		
.	10:00	A Night to Remember: Understand the role of Sleep and Memory Consolidation Paul Shaw, Washington University in St. Louis		
		osium 12: Period, Precision, and Amplitude • Gallatin Hiroki Ueda, RIKEN / University of Tokyo		
	8:15	Introduction		
	8:30	Chromatin Regulators and Regulatory Networks Governing Clocks Jay Dunlap, Geisel School of Medicine at Dartmouth		
	9:00	Post-translational regulation of the Drosophila clock Joanna Chiu, University of California, Davis		
	9:30	Circadian circuits, neurons and molecules in flies Michael Rosbash, Brandeis University		
	10:00	Functional structure of cyanobacterial clock protein KaiC Takao Kondo, Nagoya University		

10:30–11:00 AM Refreshment Break • Upper Atrium

Exhibits • Lower Atrium

Meet the Professors • Lake / Canyon

Till Roenneberg (sleep, chronotypes, entrainment, Neurospora)

John O'Neill (cellular rhythms, signaling and metabolic regulation)

Amita Sehgal (Drosophila, clock genes, sleep)

Joe Bass (genetic approaches to study clocks and metabolism)

Joseph Takahashi (mouse genetics, clock genes)

Erik Herzog (in vitro, suprachiasmatic nucleus, clock communication)

Barbara Helm (birds, ecological clocks, seasonality)

11:00 AM-12:30 PM Slide Session I • Fly Clocks • Jefferson

Chair: Christine Merlin, Texas A & M University

- 11:00 **S49 Identification of novel genes associated with CLK-CYC complexes that regulate circadian rhythms in Drosophila**Guruswamy Mahesh, Texas A & M University
- 11:15 **S50 Operating circuits in the Drosophila multi-oscillator system** François Rouyer, INAF
- 11:30 **S51 Bride of DBT is a noncanonical FK506-binding protein that forms** cytosolic foci during the night and interacts with DBT to stimulate its circadian activity towards PER
 Jin-Yuan Fan, UMKC
- 11:45 **S52 Rhythmic Rho1 activity regulates pacemaker neuron structural** plasticity and seasonal adaptation
 Justin Blau, NYU
- 12:00 **S53 The hierarchy of landmark and celestial cues in animal navigation:**Insight through manipulating the circadian clock
 James Cheeseman, The University of Auckland
- 12:15 **S54 Molecular mechanism of temperature input to the Drosophila** circadian clock

**Ozgur Tataroglu, UMass Medical School

11:00 AM-12:30 PM Slide Session J • Fungal Clocks • Amphitheatre

Chair: Luis Larrondo, Pontificia Universidad Católica de Chile

- 11:00 S55 A study of mRNA levels over circadian time using RNA-SEQ highlights the potential for additional circadian regulation between rhythmic transcriptional activation and total mRNA amounts

 Jennifer M. Hurley, Geisel School of Medicine at Dartmouth
- 11:15 **S56 The Frequency Natural Antisense Transcript Promotes then Represses Expression via Facultative Heterochromatin**William Belden, Rutgers University
- 11:30 **S57 Refractory frq promoter is blocked at the level of transcription initiation**

Gencer Sancar, Heidelberg University

11:45 **S58 • A tale of two cycles: Metabolic redox cycles in yeast and circadian oscillations**

Helen Causton, University, New York

12:00 **S59 • Biochemical Basis for Circadian Oscillation by the C-terminal Regulatory Domain of BMAL1**

Andrew Liu, University of Memphis

12:15 **S60 • Circadian Regulation of Translation through the Eukaryotic Elongation Factor eEF-2 in Neurospora crassa**

*Stephen Caster, Texas A & M University

11:00 AM-12:30 PM Slide Session K • Clocks and Feeding • Madison

Chair: Ralph Mistlberger, Simon Fraser University

- 11:00 **S61 The transcription factor cabut (cbt) links the circadian molecular and behavioral systems with food intake and metabolism**Sebastian Kadener, The Hebrew University of Jerusalem
- 11:15 S62 Myeloid cell-specific circadian clock disruption potentiates dietinduced inflammation and insulin resistance David Earnest, Texas A & M University
- 11:30 S63 The melanocortin-4 receptor integrates environmental light and metabolism

*Deanna Arble, University of Cincinnati

- 11:45 **S64 Time-restricted feeding is a simple preventative and therapeutic intervention against diverse nutritional challenges***Amandine Chaix, The SALK Institute for Biological Studies
- 12:00 S65 Altered circadian synchronization to light in genetically obese ob/ ob mice: partial normalization with leptin
 Edith Grosbellet, Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences
- 12:15 **S66 Non-circadian and non-invasive biomarkers of circadian rhythm** disruption

Kirsten Van Dycke, National Institute for Public Health and the Environment

11:00 AM-12:30 PM Slide Session L • Entrainment II • Gallatin

Supported, in part, by Reset Therapeutics Chair: Stephanie Taylor, Colby College

11:00 S67 • Social Jetlag, Obesity and Metabolic Disorder: Investigation in a cohort study

Michael Parsons, MRC Harwell

- 11:15 **S68 Prior light history impacts on higher order cognitive brain function** Sarah Chellappa, University of Liège
- 11:30 S69 Clocks for All Seasons: Unravelling the Genetic Circadian and Interval Timing Mechanisms in the Mammalian Hypothalamus and Pituitary

Shona Wood, University of Manchester

- 11:45 S70 Efficacy of Tasimelteon Treatment in Totally Blind Individuals with Non-24-Hour Sleep-Wake Disorder
 Steven Lockley, Brigham and Women's Hospital
- 12:00 **S71** Withdrawn
- 12:15 **S72 CRY in the compound eyes mediates entrainment in Drosophila** *Matthias Schlichting, University of Wuerzburg

12:30–3:15 PM Free Time

12:30 PM Lunch Time Tables • *Huntley Dining Room*

Chronobiology advocacy: Interfacing with the public (Web, blogs, media...)

Impact of circadian rhythms on athletic performance

12:45–2:45 PM SRBR Executive Committee Meeting • Lamar / Gibbon

3:15–4:15 PM Workshop II: Clocks in Society: "Is There a Best Way to Assess Chronotype? • Jefferson / Madison

Chairs: Elizabeth Klerman, Brigham and Women's Hospital, Harvard Medical School, and Ying-hui Fu, University of California, San Francisco

Discussants: Derk-Jan Dijk, University of Surrey, Jeanne Duffy, Brigham and Women's Hospital, Harvard Medical School, and Till Roenneberg, University of Munich

4:15–6:30 PM Symposium13: *Metabolism II* • *Jefferson*

Chair: Akhilesh Reddy, University Of Cambridge

- 4:15 Introduction
- 4:25 Regulation of metabolic pathways and growth by the circadian clock of Neurospora

Michael Brunner, Heidelberg University

4:50 Circadian Regulation of Hepatic Triglyceride Accumulation Gad Asher, Weizmann Institute of Science, Israel

5:15	Interplay of Circadian and Metabolic Genomic Pathways Joseph Takahashi, UT Southwestern			
5:40	The Sweet Tooth of the Circadian Clock Xiaoyong Yang, Yale University School of Medicine			
6:05	Leveraging time: drug action, health, and dark matter John Hogenesch, University of Pennsylvania Perelman School of Medicine			
	osium 14: <i>Circadian neurodegeneration</i> • <i>Gallatin</i> Phyllis Zee, Northwestern University			
4:15	Introduction			
4:25	Regulation of synaptic adhesion molecules by clock genes: a pathway relevant to sleep Valérie Mongrain, Université de Montréal			
4:50	Clock genes, oxidative stress, and neurodegeneration Erik Musiek, Washington University School of Medicine in St. Louis			
5:15	Circadian disruptions in Huntington's and Parkinson's disease i.e. can we fix a broken clock? Christopher Colwell, UCLA			
5:40	Circadian genes, neuronal activity and psychiatric disease Colleen McClung, University of Pittsburgh			
6:05	Circadian dysfunction in Huntington's disease Jenny Morton, University of Cambridge			
	osium 15: <i>Circadian Clock Structures</i> • <i>Madison</i> Andy LiWang, University of California at Merced			
4:15	Introduction			
4:25	Flavoprotein light sensors that entrain circadian rhythms Brian Crane, Cornell University			
4:50	Structure-function analyses of Cryptochromes Eva Wolf, JGU University Mainz and IMB Mainz			
5:15	Wrestling for control: a dynamic competition between coactivators and cryptochrome regulates CLOCK:BMAL1 activity Carrie Partch, UC Santa Cruz			
5:40	How Molecular Architecture Yields Mechanistic Insights into the Circadian Clock Martin Egli, Vanderbilt University			
6:05	KaiC as Circadian Pacemaker of Cyanobacterial Circadian Clock Shuji Akiyama, Institute for Molecular Science, Research Center of Integrative Molecular Systems			

8:00-8:30 PM

Datablitz III • Madison / Gallatin

Chair: Michael Nitabach, Yale University

Excellence Award recipients are indicated with ** before their name and Merit Award recipient names are preceded with *.

Post-operative Circadian and Sleep Disruption in Healthy Patients

*Nicola Ludin

Impact of Bmal1 on ischemic and sleep processes in mice Allison Brager

Rev-ERBa: a novel chrono-pharmacological target to regulate inflammatory diseases

*Marie Pariollaud

Transcription-centric circadian generation of rhythmic transcripts in Neurospora crassa

Gencer Sancar

Silencing the molecular timekeeper in human cancer

*Alicia K. Michael

Hausp transmits DNA damage signals to the circadian clock via Cry1 stabilization

*Stephanie Papp

Using circadian rhythms to optimize glioblastoma therapy *Emily Slat

Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clock in mice housed under different photoperiods

*Yuko Ikeda

Reproduction and fertility in the arrhythmic Siberian hamster (Phodopus sungorus)

*Erin Cable

The role of the pineal gland in the photoperiodic control of bird song frequency and repertoire in the house sparrow

Gang Wang

Interaction between the Circadian and metabolic systems controls thermoregulation

Mara Guzman-Ruiz

Effects of timing of saturated fat and liquid sugar intake on obesity in rats and circadian rhythms in hypothalamic cells

Joelle Oosterman

Food-intake at night on workdays is associated with cardiometabolic syndrome risk factors in night-shift nurses

*Hylton Molzof

Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides

*Yaarit Adamovich

Disturbances in the murine hepatic circadian clock in alcohol-induced hepatic steatosis

*Peng Zhou

Caloric Intake During the Biological Night and the Effect on 24h Energy Expenditure and Thermic Effect of Food

**Andrew McHill

Don't work around the clock—implementing a chronotype-based shift schedule *Celine Vetter

The acute phase of moderate-severe traumatic brain injury: 24-hour melatonin and the rest activity-cycle

*Catherine Duclos

Circadian Modulation of Neuromotor Control

Jennifer Gile

Robust central molecular clock in the face of behavioural arrhythmia in a Drosophila model of Alzheimer's disease

*Ko-Fan Chen

Circadian Control of Gonadotropin-Inhibitory Hormone (GnIH) in the Preovulatory Luteinizing Hormone Surge

Kimberly Russo

The Drosophila circadian clock is a variably coupled network of multiple peptidergic units

Zepeng Yao

Cell specific regulation of Pigment Dispersing Factor (PDF) in Drosophila melanogaster

*Sudershana Nair

Reduced excitatory synaptic strength of nucleus accumbens neurons in the ClockΔ19 mouse

Puja Parekh

Inhibiting matrix metalloproteinases 2 and 9 phase shifts neuronal activity rhythms in the suprachiasmatic nucleus

*Kathryn Abrahamsson

Role of Calcium and Camp Signaling in the Prothoracic Gland in the Circadian Timing of Drosophila Emergence

*Angelina Palacios-Muñoz

8:30–10:30 PM Poster Session III (P216–323) • Mountain Mall

Wednesday, June 18

8:15–10:30 AM	Chairs	osium 16: Consequences of Circadian Disruption • Jefferson s: Celine Vetter, Brigham and Women's Hospital and Harvard Medical ol, and Michael Parsons, MRC Harwell
	8:15	Introduction
	8:30	Metabolic consequences of circadian disruption in humans Frank Scheer, Brigham and Women's Hospital, Harvard Medical School
	9:00	A role for sleep timing in the regulation of circadian transcriptome rhythms in mice Henrik Oster, University of Lübeck
	9:30	A chocolate a day keeps desynchrony away Carolina Escobar, Universidad Nacional Autónoma de México
	10:00	Exploring the depth of behavioural deficits in mouse mutants with disrupted clocks: Cause and consequence Patrick Nolan, MRC Harwell
		osium 17: <i>Neural Circuits III: Clock Connectomics</i> • <i>Gallatin</i> Fernanda Ceriani, Fundaciòn Instituto Leloir
	8:15	Introduction
	8:30	CRY expression in a subset of Drosophila clock neurons Taishi Yoshii, Okayama University
	9:00	Connectivity Hierarchy and Coupling in a Circadian Clock Neuron Network Orie Shafer, University of Michigan
	9:30	Clocks in Fish: New clues to unravel the circadian timing system Nick Foulkes, Karlsruhe Institute of Technology
	10:00	Monitoring and manipulating circadian cells and circuits in the SCN Michael Hastings, MRC Laboratory of Molecular Biology
		osium 18: <i>Clocks in the Wild • Madison</i> Antonio Nuñez, Michigan State University
	8:15	Introduction
	8:30	Diurnality and depression—is there a connection? Noga Kornfeld-Schor, Tel Aviv University
	9:00	The entrainment tug-of-war: the power of social and photic cues in young honey bees Guy Bloch, EEB
	9:30	Complex genetic mechanisms underlie evolution of divergent circadian phenotypes in Drosophila Vijay Sharma, Jawaharlal Nehru Centre for Advanced Scientific Research
	10:00	Timing matters in social life of birds Barbara Helm, University of Glasgow

10:30–11:00 AM Refreshment Break • Upper Atrium

Exhibits • Lower Atrium

Meet the Professors • Lake / Canyon

Bambos Kyriacou (Drosophila, seasonal, crustacean, circatidal, ecology, evolution)

Charles Czeisler (humans, sleep and circadian thythms)

David Weaver (rodents, clock genes, molecular mechanisms of circadian rhythms

Elizabeth Maywood (rodents, SCN, clock genes)

Carla Green (rodents, clokc output, metabolism, post-transcriptional)

Hugh Piggins (rodents, SCN, electrophysiology, neuropeptides)

Phyllis Zee (clinical rhythms and sleep)

Douglas McMahon (rodents, physiology, retina)

11:00 AM-12:30 PM Slide Session M • Green Clocks • Amphitheatre

Chair: Michael Rust, University of Chicago

11:00 S73 • Mathematical modeling reveals additional links between the circadian clock and the redox rhythm in Arabidopsis through a master immune regulator

Sargis Karapetyan, Duke University

- 11:15 **S74 Quantitative Genetic Analysis of Natural Variation of Circadian Rhythms in Arabidopsis thaliana and Brassica rapa**C. Robertson McClung, Dartmouth College
- 11:30 S75 The roles of FKF1 SCF complex and GIGANTEA protein in the stability regulation of CONSTANS for photoperiodic flowering
 Takato Imaizumi, University of Washington
- 11:45 **S76 Modeling the plant circadian system in Arabidopsis thaliana through system identification**Mathias Foo, Asia Pacific Center for Theoretical Physics (APCTP)
- 12:00 **S77 Dynamic Localization of Cyanobacterial Circadian Clock Proteins** *Susan Cohen, University of California
- 12:15 **S78 Mixtures of opposing phosphorylations within hexamers precisely time feedback in the cyanobacterial circadian clock**Michael Rust, University of Chicago

11:00 AM-12:30 PM Slide Session N • Human Clocks • Jefferson

Chair: Ilia Karatsoreos, Washington State University

- 11:00 **S79 Detecting Sleep Architecture via Wrist-Actimetry**Eva Winnebeck, Ludwig Maximilians University
- 11:15 **S80 Chicago to Kenya: Taus and phase shifts**Charmane Eastman, Rush University Medical Center
- 11:30 **S81 The Effects of Chronotype, Sleep Schedule and Light/dark Pattern** Exposures on Circadian Phase

Mariana Figueiro, Lighting Research Center, Rensselaer Polytechnic Institute

11:45 S82 • Every breath you take: The Human Circadian Breathylome Around the Clock

Robert Dallmann, Institute of Pharmacology and Toxicology, University of Zurich

- 12:00 **S83 Circadian rhythm endophenotypes for bipolar disorder** Lucia Pagani, UTSW
- 12:15 S84 Human peripheral circadian clocks respond to glucocorticoids independently of the central clock

 Marc Cuesta, McGill University

11:00 AM-12:30 PM Slide Session O • Ontogeny of Clocks • Madison

Chair: Andrew C. Liu, University of Memphis

- 11:00 S85 MicroRNA-92a Acts as a Circadian Regulator of Neuronal Excitability in Drosophila

 Xiao Chen, Brandeis University
- 11:15 **S86 Epigenetic and transcriptional program regulates differentiation- coupled circadian clock development in mammalian cells**Kazuhiro Yagita, Kyoto Prefectural University of Medicine
- 11:30 **S87 Development of the mouse liver clock**Xiaodong Li, College of Life Sciences, Wuhan University
- 11:45 S88 Lhx1: From Studies of SCN Differentiation to Insights into SCN Physiology

**Joseph Bedont, Johns Hopkins Medical Institute

12:00 S89 • Programming of mice circadian photic responses by postnatal light environment

Maria Canal, Faculty of Life Sciences, University of Manchester

12:15 **S90 • Role for DNA methylation in insect photoperiodic timing** Eran Tauber, University of Leicester

	Chair. Toay dothin, fel Aviv Oniversity		
	11:00 S91 • Molecular genetic analysis of zebrafish circadian rhythms Han Wang, Center for Circadian Clocks, Soochow University		
	11:15 S92 • The zebrafish pineal gland transcriptome reveals new elements in the circadian clockwork and a complex regulation of the circadian clockwork by light Yoav Gothilf, Tel Aviv Universitry		
	11:30 S93 • Melatonin is required for the circadian regulation of sleep but not for circadian rhythms Avni V. Gandhi, California Institute of Technology		
	11:45 S94 • A novel neuropeptide implicated in zebrafish sleep *Ida Barlow, University College London		
	12:00 S95 • The hypnotic effects of melatonin in wild type and mutant zebrafish Jason Rihel, University College London		
	12:15 S96 • A transgenic zebrafish line monitoring the circadian core clock feedback loopa tool for developmental, chemical and neural biological studies Benjamin Weger, Nestlé Institute of Health Sciences		
	Benjamin Weger, Nestie institute of health Sciences		
12:30-2:30 PM	Free Time		
12:30 PM	Lunch Time Tables • Huntley Dining Room		
	Working times: Circadian insights and field study challenges		
	Chronobiology of drug addiction		
2:30-3:30 PM	Business Meeting • Missouri Ballroom		
3:30-4:30 PM	Workshop III: Clock Reporters: Are We Being Misled by Reporters? What Reporters do We Need? • Missouri Ballroom		
	Chairs : Shin Yamazaki, University of Texas Southwestern, Robert Dallmann, University of Zurich		
	Discussants : Jennifer Evans, Marquette University, Charna Dibner, University Hospital of Geneva, and Shigenobu Shibata, Waseda University		
4:30-5:30 PM	Pittendrigh / Aschoff Lecture • Missouri Ballroom		
	Introduction: Erik Herzog, Washington University in St. Louis		
	Presentation: Interlocked Clocks		
	William Schwartz, University of Massachusetts Medical School		
5:45-6:30 PM	Free Time & Cocktails (cash bar) • Huntley Dining Room		
6:30-7:30 PM	Travel Awards / Entertainment / Cocktails (cash bar) • Huntley Dining Room		
7:30 PM	Montana BBQ • Mountain Mall		

11:00 AM-12:30 PM Slide Session P • Fish Clocks • Gallatin

Chair: Yoav Gothilf, Tel Aviv University

Poster Titles

* Indicates Trainee Merit Award recipient

- P1 Time-of-day specific changes in metabolic detoxification and insecticide resistance in the malaria mosquito Anopheles gambiae Giles Duffield, University of Notre Dame
- P2 Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae Giles Duffield, University of Notre Dame
- P3 Light-regulated blood-feeding and flight activity behavior and a light phase response curve for the Anopheles gambiae malaria mosquito *Aaron Sheppard, University of Notre Dame
- P4 Analysis of Locomotor Activity Rhythms in a Population of Free-Behaving *C. elegans* Ari Winbush, University of Nevada
- Physical and psychological stress as potent synchronizers of mouse peripheral circadian clocks *Yu Tahara, Waseda University
- P6 Redox oscillations in fruit flies Utham Kashyap Valekunja, Wellcome Trust-MRC Institute of Metabolic Science
- P7 Shock O'Clock The circadian clock in endotoxic shock—systemic versus local clock regulation
 Veronika Lang, Charité Universitätsmedizin
- P8 Chronic Stress Induces Physiological and Brain Region Specific Molecular Disruptions of Circadian Amplitude in Mice Nicole Edgar, University of Pittsburgh
- P9 CCA1, a central circadian oscillator mediates ER stress response in Arabidopsis Hee Jin Park, Gyeongsang National University
- P10 Assessing the Impact of Chronic Sleep Restriction and Acute Sleep Deprivation on Performance-Associated Regional Brain Activation Using Near-Infrared Spectroscopy Michael Lee, Brigham and Women's Hospital/Harvard Medical School
- P11 Sleep deprivation alters hepatic metabolism and the peripheral clock Jessica Ferrell, Northeast Ohio Medical University
- P12 Hyper-sensitivity of the circadian system to light in Delayed Sleep Phase Disorder Sean Cain, Monash University
- P13 Inter-individual differences in night-time behavioral and cerebral responses to high and low sleep pressure conditions Christina Schmidt, Psychiatric Hospital of the University of Basel
- P14 Circadian activity splitting in two sighted individuals with non-24 hour sleep-wake disorder

 Sabra Abbott, Northwestern University
- P15 Novel PER2 alleles for familial advanced sleep phase Christin Chong, UCSF
- P16 An Important Role of 5 Evening Neurons in Drosophila Circadian Rhythms and Sleep Fang, HHMI/Brandeis Univ
- P17 A circadian lens on human population activity patterns: Inferences from the power grid Caitlin Crosier, Kent State University

^{**} Indicates Trainee Excellence Award recipient

- P18 Chronobiology meets Big Data: Humans 'in the wild' Dimitri Perrin, RIKEN
- P19 Circadian disfuntion in chronic kidney disease Inês Chaves, Erasmus MC
- **P20** The effect of light containing spatial structure on the suprachias matic nucleus Josh Mouland, University of Manchester
- P21 Trypanosoma brucei accelerates the mouse circadian clock Filipa Rijo-Ferreira, UT Southwestern / Instituto Medicina Molecular
- P22 The Role of Sustained GABA-A Receptor Activation within the SCN in Light-induced Phase Shifts is Phase Dependent Daniel Hummer, Morehouse College
- P23 Effects of chronic nighttime light exposure on the daily rhythms in locomotor activity and clock gene expression in the SCN Lily Yan, Michigan State University
- P24 Suprachiasmatic clues to circadian dysfunction in the BACHD mouse model of Huntington's disease Dika Kuljis, UCLA
- **P25** Temporal pattern of GABAA receptor δ subunit expression in the suprachiasmatic nucleus of male Syrian hamsters James Walton, Georgia State University
- P26 CRYPTOCHROME and its role in controlling circadian rhythms using electrophysiological techniques in Drosophila melanogaster Marie Nugent, University of Leicester
- P27 Phase-mapping the mouse brain with a CRY1::mCherry fluorescent reporter Arthur Millius, RIKEN CDB
- P28 Phosphorylation of the Cryptochrome 1 C-terminal tail regulates circadian period length Peng Gao, Department of Neuroscience, University of Texas Southwestern Medical Center
- **P29** Structural and Functional Characterization of the Interactions between Cryptochromes and Xenobiotic Receptors Anna Kriebs, The Scripps Research Institute
- P30 Characterising of the role of Cryptochromes in Retinal Responses to Light *Jovi Chau-Yee Wong, University of Oxford
- **P31** Structural Characterization of Fungal Photoreceptor-Envoy Jameela Lokhandwala, Southern Methodist University
- P32 Differential Mechanisms of Phase Advancing versus Delaying Light Pulses in Drosophila Jay Hirsh, University of Virginia
- P33 Identification of a second region regulating nuclear localization of the circadian clock protein mouse Cryptochrome 1 Karla Marz, Gustavus Adolphus College
- P34 Altered cryptochrome degradation influences GABAergic signaling and excitation of suprachiasmatic nucleus neurons Sven Wegner, Faculty of Life Sciences, University of Manchester
- P35 Magnetoreception in Drosophila melanogaster Giorgio Fedele, University of Leicester
- P36 Roles of C-terminal truncated Bmal1 on circadian rhythm Noheon Park, University of Texas Southwestern Medical Center
- P37 A slow conformational change in the C-terminus of BMAL1 modulates binding to transcriptional coactivators Chelsea L Gustafson, University of California Santa Cruz
- P38 Structure/function interrogation of mCRY1 defines a distributed binding interface with the CLOCK/BMAL1 heterodimer *Clark Rosensweig, UT Southwestern Medical Center
- P39 Withdrawn

- P40 The effect of interneuronal communication between clock neurons in Drosophila Qi Zhang, University of Michigan
- P41 Translational control of the circadian clock through the cap-binding protein eIF4E Ruifeng Cao, McGill University
- P42 The NRON/KPNB1 Complex Regulates Nuclear Translocation and Function of the Circadian Clock Yool Lee, University of Pennsylvania
- P43 Development of circadian pacemaker cells in the Drosophila brain *Tianxin Liu, Texas A&M University
- **P44** The beginning of in vivo clock gene expression rhythmicity in the fetal rat SCN Alena Sumova, Institute of Physiology, Academy of Sciences of the Czech Republic
- P45 An ultradian rhythm of somite formation is modulated by xBmal1 and xNocturnin in Xenopus laevis Kristen Curran, University of Wisconsin Whitewater
- P46 The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit Hai-Ying Mary Cheng, University of Toronto Mississauga
- P47 Hyperoxia affects neonatal lung circadian dynamics and worsens injury Shaon Sengupta, Children's Hospital of Phialdelphia
- P48 Maternal effects on circadian gene expression in fetal kidneys Krisztina Meszaros, Heidelberg University
- P49 Dopamine and Melatonin Regulate Ocular Circadian Rhythms Kenkichi Baba, Morehouse School of Medicine
- P50 Utilizing Electroretinograms (ERG) to Analyze Circadian Rhythms in Grompadorhina Portentosa Photoreceptor Sensitivity Wil Bogue, Northeastern Illinois University
- P51 Retinal Muller Cells are Circadian Clock Cells and Clock Genes Impact Retinal Neovascularization

 Douglas McMahon, Vanderbilt University
- P52 Physiological and behavioural consequences of destabilised entrainment in melanopsin knockout mice Violetta Pilorz, University of Oxford
- P53 Retinal projections to the suprachiasmatic nucleus: from morphology to function Diego Fernandez, Johns Hopkins University
- P54 ipRGC neurotransmitters, glutamate and PACAP, are distinct in their contributions to nonimage forming behaviors • *William Keenan, Johns Hopkins University
- P55 Involvement of 5-HT3 and 5-HT4 receptors in the regulation of circadian clock gene expression in mouse small intestine Natsumi Aoki, Waseda University
- P56 Serotonergic enhancement of photic phase shifts: BMY7378 does not require the serotonergic fibers connecting the median raphe nucleus to the suprachiasmatic nucleus Victoria Smith, University of Calgary
- P57 Investigating ASIC1a as a potential link between circadian disruption and mood disorders in mice Jonathan Shelton, Janssen R&D
- P58 A Mutation in PERIOD3 Causes Familial Advanced Sleep Phase Luoying Zhang, University of California, San Francisco
- P59 Perinatal photoperiod affects the serotonergic system *Noah Green, Vanderbilt University

- P60 In patients with Alzheimer's disease, correlations in motor activity fluctuations respond to bright light therapy are associated with mood and cognition Kun Hu, Brigham & Women's Hospital/Harvard Medical School
- P61 Early wake therapy phasae-delays advanced melatonin offset and improves mood in depressed pregnant women Barbara Parry, University of California, San Diego
- P62 Inhibition of specific classes of histone deacetylases reduce anxiety- and depression-like behaviors in ClockΔ19 mutant mice Ryan Logan, University of Pittsburgh
- P63 Association of Depression with Variations of Melatonin and Cortisol Rhythms in Delayed Phase Sleep Disorder (DSPD) Patients Seong Jae Kim, Northwestern University Feinberg School of Medicine
- P64 Circadian abnormalities in the Myshkin mouse model of mania *Joseph Timothy, University of Manchester
- P65 Brain circadian clocks in a mouse model of depression Dominc Landgraf, UCSD
- P66 Daily Temporal Rhythms in Cellular Activity in the Lateral Habenula Hugh Piggins, University of Manchester
- P67 Cyanobacterial Clock Output Feeds Back through Metabolism to Regulate Clock Input Gopal K. Pattanayak, University of Chicago
- P68 Intracellular Distributions of the KaiABC Proteins During the Cyanobacterial Circadian Cycle:

 A Spatiotemporal Simulation Stefanie Hertel, Charité—Universitätsmedizin Berlin
- P69 Circadian regulation of oxidative stress-induced Stress Granules Victoria A. Acosta Rodríguez, CIQUIBIC-CONICET, Dpto de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
- P70 Circadian regulation of actin dynamics Ned Hoyle, MRC Laboratory of Molecular Biology
- P71 Diverse Circadian Periods from Individual Cells: Stochastic or Clonal? Yan Li, The University of Texas Southwestern Medical Center
- P72 An Ultradian Rhythm in Mouse Embryonic Fibroblast (MEF) Cell Lines Shuzhang Yang, UT Southwestern Medical Center
- P73 Transcriptional responses during synchronization of clocks in mouse and human cells Jason DeBruyne, Morehouse School of Medicine
- P74 Genome-wide analysis of circadian clock properties in human fibroblasts *Ludmila Gaspar, Institute of Pharmacology and Toxicology
- P75 The circadian clock in the Antarctic krill Euphausia superba *Benjamin Hunt, University of Leicester
- P76 Understanding timekeeping in an intertidal crustacean Eurydice pulchra Lin Zhang, Leicester University
- P77 First description of circadian rhythms in visual sensitivity, predatory behavior, and locomotion in a praying mantis Aaron Schirmer, Northeastern Illinois University
- P78 Clock Silencing in Adulthood Impairs Rhythmic Insulin Release and Reprograms Protein Secretion Transcription Networks Mark Perelis, Northwestern University Feinberg School of Medicine

- P79 Sustained inhibition of Na+/K+/Cl-co-transporter 1 (NKCC1) enhances the magnitude of light-induced phase delays of the circadian clock *John (Mac) McNeill, Georgia State University
- P80 Constitutive activation of glycogen synthase kinase 3 induces metabolic dyssynchrony and impairment in mice Karen Gamble, University of Alabama at Birmingham
- P81 Influence of circadian rhythms on postprandial triglyceride metabolism: Role of the Suprachiasmatic Nucleus Sofia Moran-Ramos, UNAM
- P82 Novel Cry Stabilizing Compounds Reinforce the Peripheral Clock Mechanism and Lower Blood Glucose in Diabetic Mice Jeffrey Johnson, Reset Therapeutics
- **P83** Metabolic disturbances in a model of chronic jetlag Luciano Marpegan, Universidad Nacional de Quilmes/CONICET
- P84 Insulin-FOXO3 signaling modulates circadian rhythms via regulation of Clock transcription
 Ines Chaves, Erasmus MC
- P85 Bmal1 in brown adipocytes is not required for rhythmic oscillations of core body temperature
 Georgios Paschos, University of Pennsylvania
- P86 Human skeletal muscle clock: implications in myokine secretion and insulino-resistance Charna Dibner, Faculty of Medicine, University of Geneva
- P87 Circadian clocks and Polyamines—a metabolic feedback loop *Ziv Zwighaft, Weizmann Institute of Science
- P88 Effects of light, food, and methamphetamine on the circadian activity rhythm in mice Julie Pendergast, Vanderbilt University Medical Center
- P89 Food-entrainable circadian oscillations of PER2:LUC in the mouse olfactory bulb: critical role for olfactory input *Ilya Pavlovski, Simon Fraser University
- P90 Phase advanced locomotor activity during timed restricted feeding persists in tissue-type plasminogen activator knock out (tPA-/-) mice Ashutosh , Kent State University
- P91 Circadian properties of food-anticipatory activity re-examined: entrainment limits and scalar timing in operant and general activity *Christian Petersen, Simon Fraser University
- P92 Meal shift experiments reveal unusual properties of circadian food anticipatory rhythms in rats and mice Andrea Smit, Simon Fraser University
- P93 Exploring interactions between copper homeostasis and transport and the SCN circadian clock Yukihiro Yamada, University of Tennessee
- P94 MicroRNAs cooperate with rhythmic transcription to shape circadian gene expression **Ngoc-Hien Du, Center for Integrative Genomics, University of Lausanne
- P95 Neurospora crassa Circadian Rhythms in Continuous Chemostat Cultures Allison Cockrell, Naval Research Laboratory
- **P96** Use of mouse substrains identifies a QTL for circadian amplitude Vivek Kumar, UT Southwestern
- P97 A Novel ENU-Induced Mutation in the Melanocortin-4 Receptor (MC4R) Gene in Mice Leads to Altered Body-Weight Regulation and Expression of Circadian Rhythmicity Marleen de Groot, HHMI/UTSouthwestern
- P98 The circadian clock controls pre-mRNA splicing through the spliceosome Lin Zhang, Sun Yat-Sen University

- P99 Circadian gene expression patterns on the periphery depend on mouse genotype Rok Kosir, Faculty of Medicine, University of Ljubljana
- P100 Estrogen response elements in clock genes: a bioinformatic analysis Jessica Lensie, Kent State University
- P101 Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver Daniel Mauvoisin, Nestle Institute of Health Science
- P102 Withdrawn
- P103 New insight into post-transcriptional regulation of circadian rhythms using a system wide identification of RNA-binding proteins Pauline Gosselin, University of Geneva
- P104 Role of the circadian clock regulated ATF5 transcription factor Capucine BOLVIN, NIHS
- P105 Orchestration of the rhythmic translation by the circadian clock Florian Atger, NIHS
- P106 Chronic phase shifting paradigms disrupt locomotor rhythm entrainment in C57BL/6J but not BALB/cJ mice Todd Weber, Rider University
- P107 Drosophila mechanosensory organs and Ionotopic Receptors (IRs) contribute to clock synchronization by temperature cycles and proprioceptive feedback ** Chenghao Chen, UCL
- P108 Genetic engineering of an S714 mutation in PER1 leads to an advanced feeding rhythm phase in mice Guangsen Shi, Nanjing University
- P109 Sustained Inhibition of GABAA Receptors in the SCN is Necessary to Inhibit Light-induced Phase Delays Tony Larkin, Morehouse College
- P110 Bifurcated rhythms lead to rapid circadian re-entrainment after simulated travel to antimeridian time zones in mice *Liz Harrison, UC San Diego Center for Chronobiology
- P111 Light duration requirements for induction and maintenance of bifurcated circadian rhythms in C57BI/6j mice under light:dark:light:dark cycles Jonathan Sun, UC San Diego
- P112 Excitotoxins cause significant damage to the SCN and SPZ of diurnal grass rats, but this damage does not interfere with light-induced masking behavior Andrew Gall, Michigan State University
- P113 Overnight bright light accelerates re-entrainment to a 6h LD shift in per2:luc mice: photic, nonphotic and rhythm amplitude correlates Curtis Hazelwood, Simon Fraser University
- P114 Caffeine does not entrain the circadian clock but improves daytime alertness in blind patients with non-24-hour rhythms Steven Lockley, Brigham & Women's Hospital
- P115 Morning and Evening oscillators cooperate to reset circadian behavior in response to light input *Pallavi Lamba, UMass Medical School
- P116 Are photic shifts giving you a migraine? Try sumatriptan! Priyoneel Basu, University of Calgary
- P117 Bifurcated entrainment enables flexible resetting of PER2::LUC rhythms by dissection in SCN and peripheral tissues Takako Noguchi, UCSD
- **P118** Delineating the dopaminergic ultradian oscillator *Ian Blum, Douglas Mental Health University Institute
- P119 Withdrawn

- P120 How can sleep fix a broken brain? Stephane Dissel, Washington University in St. Louis School of Medicine
- P121 Eveningness is associated with poor sleep quality in shift workers during both night and day shifts Jeanne Sophie Martin, Laval University
- P122 TIMELESS Mutation in FASPD Results in Aberrant Subcellular Localization and Shortened Period Pei-Ken Hsu, University of California, San Francisco
- P123 Molecular mechanism of S665L mutation of PER2 in FASP William C. Hallows, University of California San Francisco
- P124 From humans to monkeys and back: physical activity patterns in humans and primates Vadim Zipunnikov, Johns Hopkins Bloomberg School of Public Health
- P125 The human circadian clock modulates apnea severity Matthew Butler, Oregon Health & Science University
- P126 Functional decoupling of melatonin suppression and circadian phase resetting in humans Shadab Rahman, Harvard Medical School
- P127 Pyroelectric Sensors for Measurement of both Circadian Rhythms and Sleep in Mice Laurence Brown, Sleep & Circadian Neuroscience Institute (SCNi)
- P128 Chronic cocaine causes long-term alterations in circadian period and photic entrainment in the mouse Adam Stowie, Kent State University
- P129 Circadian rhythms and voluntary ethanol intake in ethanol-preferring rat lines: effects of long-term ethanol access Alan Rosenwasser, University of Maine
- P130 Skimming the surface: elucidating molecular mechanisms associated with rapid tolerance to alcohol using the suprachiasmatic nucleus (SCN) Jonathan Lindsay, University of Tennessee
- P131 The effects of ethanol vapor on alcohol dehydrogenase, ethanol sensitivity, and activity patterns in period mutants of Drosophila melanogaster Joseph Seggio, Bridgewater State University
- P132 Changes in biological rhythms generated by the intake of sweetened water Jose Luis Chavez Juarez, Instituto de Fisiologia Celular UNAM
- P133 Environmental lighting modulates voluntary ethanol intake in mice Alan Rosenwasser, University of Maine
- P134 The Differential Roles of GABA and VIP in Synchronization and Entrainment of the Suprachiasmatic Nucleus: A Mathematical Modeling Study Nathaniel Kingsbury, University of Massachusetts, Amherst
- P135 SCN network inference Stephanie Taylor, Colby College
- P136 Modeling Circadian Transcription of Ion Channels and Cardiac Arrhythmogenesis Casey Diekman, New Jersey Institute of Technology
- P137 Timing of coupling determines synchrony and entrainment in the mammalian circadian clock
 Bharath Ananthasubramaniam, Charite and Humboldt University, Berlin
- P138 Insights into circadian oscillator robustness through a coupled stochastic model John Abel, University of California, Santa Barbara
- P139 Two loop amplitudes decide the period direction Jie Yan, Soochow University

- P140 Emergent phase shifting properties at the SCN neuronal network level; from single cells to population attributes Ashna Ramkisoensing, Leiden University Medical Center
- P141 IMAAC: a new adaptive approach to quantify nonlinear coupling between biological rhythms
 Chien-Hung Yeh, The Research Center for Adaptive Data Analysis/Center for Dynamical Biomarker and Translational Medicine, National Central University
- P142 Effects of Neonatal Transient High Oxygen Exposure On Circadian Regulation of Energy Metabolism of Adult Male Rats Marie-Amélie Lukaszewski, Ste-Justine University Hospital and Research Center, Université de Montréal
- P143 Aging differentially affects clock gene expression rhythms in the hamster adrenal gland Marilyn Duncan, Univ. of Kentucky Medical School
- P144 Preterm infants have improved growth in light/dark cycle compared with continuous bright light Manuel Angeles-Castellanos, Facultad de Medicina, Universidad Nacional Autónoma de México
- P145 Characterization of postnatal Bmal1 knockout mice Guangrui Yang, University of Pennsylvania
- P146 GATA type transcription factors WCC and SUB1 cooperate in nucleosome dynamics and transcription activation Cigdem Sancar, Heidelberg University
- P147 Ablation of the Inhibitor of DNA binding 4 (Id4) gene results in effects on circadian clock function Maricela Robles-Murguia, University of Notre Dame
- P148 Ablation of the Id2 gene results in altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue Peng Zhou, University of notre dame
- **P149** CREB co-activator CRTC regulates the circadian clock in Drosophila melanogaster *Minkyung Kim, KAIST
- P150 Structural and Chemical Characterization of the Plant Circadian Clock Brian Zoltowski, Southern Methodist University
- **P151** The co-repressor RCO-1 modulates circadian gene expression in Neurospora crassa *Consuelo Olivares-Yañez, Pontificia Universidad Católica de Chile
- P152 Identification of components of the WC-FLO, a novel oscillator in Neurospora crassa Nirmala Karunarathna, Texas A & M University
- P153 The effect of ultra short duration light pulses on the human circadian pacemaker Shadab Rahman, Harvard Medical School
- P154 Identification and characterization of phosphatases that regulate the pace of the Drosophila circadian oscillator *Parul Agrawal, Texas A & M University
- P155 Modeling the circadian oscillator protein network in Drosophila melanogaster *Vu Lam, University of California, Davis
- P156 Do rods/cones contribute to the alerting effect of light in humans? Tom Woelders, Rijksuniversiteit Groningen
- P157 Chronotype in South Africa is affected by longitude rather than genotype Laura Roden, University of Cape Town
- P158 Melatonin as a phase marker in 187 subjects: which method works best? Emma J Wams, University of Groningen

- P159 Neural basis of hyperphotosensitivity in a mouse model of Dravet syndrome Christoffer A. D. Amdahl, University of Washiington
- P160 What a headache! Zolmitriptan attenuates photic phase shifts Michael Antle, University of Calgary
- P161 Acute responses to light and darkness in diurnal grass rats and nocturnal Long Evans rats Jennifer Langel, Michigan State University
- P162 Marked attenuation of circadian food-anticipatory activity in dopamine receptor 1 knockout mice *Mateusz Michalik, Simon Fraser University
- P163 Suppression of melatonin secretion by ocular exposure to bright light in totally visually-blind individuals Joseph Hull, Harvard Medical School / Brigham and Women's Hospital
- P164 Non-image forming temporal integration of ultra-short flashes of light *Raymond Najjar, Stanford University / VA Palo Alto Health Care System
- P165 Meal and exercise timing with a high fat diet influences energy expenditure and obesity in mice Shigenobu Shibata, Wasada University
- P166 Differential effects of saturated and poly-unsaturated fatty acids in the time-dependent modulation of the circadian clock mechanism and inflammatory signaling pathways Sam Moon Kim, Texas A & M University
- P167 Controlling access time to high fat diet during inactive period protects against obesity and abnormal phase-shift of peripheral clock in mice *Atsushi Haraguchi, Waseda University
- P168 Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior Julie Pendergast, Vanderbilt University Medical Center
- P169 AhR +/- mice are protected from the harmful metabolic consequences of circadian disruption induced by shift work and high fat diet *Cassie Jaeger, Southern Illinois University School of Medicine
- P170 Lack of Food Anticipatory Activity In Female Mice Subjected to Daily Restricted Feeding Schedules Jessica Murphy, Kent State University
- P171 Unveiling novel transcriptional networks behind the circadian clock of Neurospora crassa *Felipe Muñoz-Guzmán, Pontificia Universidad Católica de Chile
- P172 Daytime circadian food anticipatory activity is associated with suppression of SCN multiple unit activity and c-Fos expression in mice *Teresa Dattolo, Simon Fraser University
- P173 MOCCS analysis for determination of CLOCK-binding motifs Hikari Yoshitane, The University of Tokyo
- P174 Genome-wide profiling of diurnal expression patterns of genes in Brassica rapa Jin A Kim, Rural Development Administration
- P175 Intriguing differences in gene expression between the Morning and Evening Cells of Drosophila
 Katharine Abruzzi, Howard Hughes Medical Institute, Brandeis University, National Center for Behavioral Genomics
- P176 Investigating the role of NonA in Drosophila circadian gene expression Hua Jin, Howard Hughes Medical Institute, National Center for Behavioral Genomics, Brandeis University

- P177 The Drosophila Brahma chromatin remodeling complex and its role in regulating circadian transcription: uncovering regulatory events at the per promoter *Rosanna Kwok, University of California, Davis
- P178 Integrated analysis of circadian expression under high-order chromatin organization Yichi Xu, CAS-MPG Partner Institute for Computational Biology
- P179 Orchestrated Signal Transduction Unites Mammalian Circadian Metabolism Across Tissues

 *Heather Ballance, University of Pennsylvania
- P180 Chromosome conformation of mammalian circadian genes Jérôme Mermet, Ecole Polytechnique Fédérale Lausanne, EPFL
- P181 Comprehensive identification of rhythmic protein synthesis using ribosome profiling in mouse liver Peggy Janich, University of Lausanne
- P182 Rhythmic glycogen synthase kinase 3-beta (GSK3β) inactivation regulates long-term potentiation and the molecular circadian clock period in the hippocampus *Rachel Besing, University of Alabama at Birmingham
- P183 Grades, sex, and seasons: diagnostics from 1,000+ student sleep logs *Benjamin Smarr, UC Berkeley
- P184 Condition entrainable circadian oscillators (CEOs) responsible for time memory in place conditioning are reset by amphetamne Martin Ralph, University of Toronto
- P185 Acute sleep deprivation persistently inhibits the induction of associative memory in Aplysia
 Lisa Lyons, Florida State University
- P186 Normal sleep architecture is critical for memory consolidation in hippocampus-mediated tasks but not in amygdala-dependent tasks *Ângela Katsuyama, University of Washington
- P187 Impact of irregularity of sleep-wake schedules on circadian phase and amplitude in college undergraduates *William Clerx, Brigham and Women's Hospital
- P188 Period1 regulates membrane properties in neurons in the suprachiasmatic nucleus Takashi Kudo, University of California, Los Angeles
- P189 A-type K+ currents (IA) regulate circadian locomotor behavior and PER2 expression in the SCN Daniel Granados-Fuentes, Washington University in Saint Louis
- P190 Repetitive firing rates are higher in Vasoactive Intestinal Peptide- (VIP-) expressing neurons during the day and night, driving coordinated electrical activity in the suprachiasmatic nucleus *Tracey Hermanstyne, Washington University, St. Louis
- P191 The firing mode of clock neurons in Drosophila revisited Nara Muraro, Fundacion Instituto Leloir
- P192 Photic entrainment and SCN neuronal excitability are modulated by glycogen synthase kinase 3 (GSK3) *Jodi Paul, University of Alabama at Birmingham
- P193 How does neuronal activity regulate gene expression in the circadian clock? *Zhonghua Zhu, New York University
- P194 Genetic manipulations of the NARROW ABDOMEN leak channel promote unique circadian behavioral phenotypes Bridget Lear, University of lowa
- P195 Variation in sleep duration and circadian phase by duty start time among short-haul commercial airline pilots Erin E. Flynn-Evans, NASA Ames Research Center

- P196 Integration of visual information in the mouse SCN Lauren Walmsley, The University of Manchester
- P197 Non-photic phase shifting by a muscarinic agonist Reid McKibbon, University of Calgary
- P198 Modifying the SCN response to light using temporal modulation Rachel Dobb, University of Manchester
- P199 The role of astrocytes from the Suprachiasmatic Nuclei in circadian pacemaker function Gabriela Dominguez-Monzon, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico
- P200 Acetylcholine participates in non-photic phase shifting of the suprachiasmatic nucleus Glenn Yamakawa, University of Calgary
- P201 Disrupted feedback to the SCN prevents adequate circadian homeostatic control Frederik Buijs, Institute for Biomedical Research
- P202 Dorsomedial region of the SCN determines the phase of the dead zone Yasufumi Shigeyoshi, Kinki University School of Medicine
- P203 Optogenetic stimulation of SCN organotypic slices phase-shifts molecular circadian rhythms
 *Mathew Edwards, MRC Laboratory of Molecular Biology
- P204 Is activation of VIP Neurons in mammalian SCN sufficient to drive circadian rhythms in behavior? **Cristina Mazuski, Washington University in St. Louis
- **P205** The impact of Drosophila's endogenous clock on fitness Melanie Bunz, University of Würzburg
- P206 Neonicotinoid pesticide disrupts circadian locomotor behavior in Drosophila *Michael Tackenberg, Vanderbilt University
- P207 Evolution of the molecular clockworks in animals: Non-congruence of gene trees for individual clock genes with clock species tree analyses Vincent Cassone, University of Kentucky
- **P208** Peripheral clocks influence nocturnal migratory restlessness Paul Bartell, Pennsylvania State University
- P209 Evolution and functional divergence of zebrafish (Danio rerio) cryptochrome genes Han Wang, Soochow University
- P210 Circadian latitudinal clines: what can we expect? Roelof Hut, University of Groningen
- P211 A new statistical metric for Drosophila sleep Sheyum Syed, University of Miami
- P212 Diurnal and dopaminergic modulation of sleep-like oscillations in the striatum and cerebellum of the anesthetized rat Ariana Frederick, Concordia University
- P213 Robust methods for scoring NREM/REM sleep cycles in complex human sleep episodes Piotr Mankowski, Brigham and Women's Hospital
- **P214** Ultradian Processes in Sleep-Related Spontaneous Movements
- P215 The mouse liver displays circadian rhythms in the phospholipid metabolism and in the activity of its synthesizing enzymes Victoria Acosta Rodríguez, Universidad Nacional de Cordoba
- P216 ENTRAIN, a smartphone app predicting circadian phase, sleep drive and optimal schedules to minimize jetlag Olivia Walch, University of Michigan
- P217 Post-operative Circadian and Sleep Disruption in Healthy Patients *Nicola Ludin, The University of Auckland

- **P218** Impact of Bmal1 on ischemic and sleep processes in mice Allison Brager, Morehouse School of Medicine
- P219 Rev-ERBa: a novel chrono-pharmacological target to regulate inflammatory diseases *Marie Pariollaud, University of Manchester
- P220 Circadian regulation of innate immunity by MiR-155 controlling BMAL1 in macrophages Annie Curtis, Trinity College Dublin
- P221 Period2 Protein Modulation of Immune Function after Chronic Jet Lag Philip Kurien, UCSF
- P222 A role for suprachiasmatic astrocytes in the immune-circadian communication Luciano Marpegan, Universidad Nacional de Quilmes
- **P223** Endogenous circadian regulation of immune response in humans Shadab Rahman, Harvard Medical School
- **P224** Diurnal changes in autophagy and the inflammatory response Sarah McLoughlin, University of Pennsylvania
- P225 Signaling inflammation to the suprachiasmatic nucleus, is the spinal Sensory system involved?
 Fernando Cázarez-Márquez, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México
- P226 Lack of evidence for a role of the NF-kappaB pathway in the suprachiasmatic circadian clock
 Andrew Coogan, National University of Ireland Maynooth
- P227 Characterizing the Role of a Phosphorelay in Circadian Regulation of the OS MAP Kinase Pathway in Neurospora crassa Nikita Ojha, Texas A&M University
- P228 Withdrawn
- P229 Withdrawn
- **P230 Circadian Rhythms of Drosophila Peroxiredoxins: Still to be Determined? •** Kimberly Kerr, Howard Hughes Medical Institute, National Center for Behavioral Genomics, Brandeis University
- P231 A new circadian transcriptional reporter in an ex vivo brain culture system allows the study of compensatory responses to perturbation in the neuronal circadian network in Drosophila

 Shaul Mezan, The Hebrew University
- **P232** Characterising the effect of anesthesia on the circadian clock in Drosophila James Cheeseman, The University of Auckland
- P233 Coordinated action of nuclear receptors required for the Drosophila circadian clocks Emi Nagoshi, University of Geneva
- P234 Transcription-centric circadian generation of rhythmic transcripts in Neurospora crassa Gencer Sancar, Heidelberg University
- P235 Transcriptional coordination of physiological responses in Nannochloropsis oceanica under diel cycles Eva Farre, Michigan State University
- P236 The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defence pathway to modulate pulmonary fibrosis Qing-Jun Meng, University of Manchester
- P237 Silencing the molecular timekeeper in human cancer *Alicia K. Michael, University of California—Santa Cruz

- P238 Hausp transmits DNA damage signals to the circadian clock via Cry1 stabilization *Stephanie Papp, The Scripps Research Institue
- **P239** Using circadian rhythms to optimize glioblastoma therapy *Emily Slat, Washington University in St. Louis
- P240 Clock-controlled molecular systems pharmacology of the anticancer drug irinotecan at cell population level Sandrine Dulong, INSERM
- **P241** Circadian aging in DNA repair deficient premature aged mice Malgorzata Oklejewicz, Erasmus MC
- P242 Real-time minute recording Per2::luc expression from hepatocarcinoma growing in nude mice Xiao-Mei Li, INSERM
- P243 Analysis of Per2 expression in breast cancer cells: A possible link between clock regulation and cancer cell stemness Vishal Sharma, Bowling Green State University
- **P244** The circadian and infradian clock of the urochordate Botryllus schlosseri Rachel Ben-Shlomo, University of Haifa—Oranim
- P245 Tumor suppressors PML and p53 directly regulate Per2 and the circadian clock Takao Miki, Kyoto University Graduate School of Medicine
- P246 Role of the Circadian Clock in Sunburn Apoptosis and Erythema Shobhan Gaddameedhi, University of North Carolina
- P247 Withdrawn
- P248 Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clock in mice housed under different photoperiods *Yuko Ikeda, Waseda University
- P249 In fruit flies, the mutual phase of PER and TIM varies with photoperiod. Could this serve as mechanism to measure day length? Pamela Menegazzi, University of Würzburg
- P250 Photoperiodic responsiveness of depression-like behavior and the brain serotonergic system in mice Tsuyoshi Otsuka, Regulation in Metabolism and behavior, Faculty of Agriculture, Kyushu University
- P251 Pinealectomy enhances sensitivity to light in melatonin-proficient CBA/N mice Keisuke Ikegami, Kinki University School of Medicine
- P252 Free-running period of activity and body temperature circadian rhythms in the brown bear (Ursus arctos) during hibernation and their light entrainment Heiko Jansen, Washington State University
- P253 Period and timeless mRNA splicing profiles under natural conditions in Drosophila melanogaster

 Gabriella Mazzotta, University of Padova
- P254 Reproduction and fertility in the arrhythmic Siberian hamster (Phodopus sungorus) *Erin Cable, University of Chicago
- P255 How molecular elements of the circadian clock are co-opted to drive mammalian photoperiodism in a melatonin-target site Alexander West, FLS, The University of Manchester
- P256 The role of the pineal gland in the photoperiodic control of bird song frequency and repertoire in the house sparrow Clifford Harpole, University of Kentucky

- P257 Interaction between the Circadian and metabolic systems controls thermoregulation Mara Guzman-Ruiz, Biomedical Research Institute
- P258 Does the Drosophila seasonal timer require a circadian clock? Mirko Pegoraro, University of Leicester
- P259 Effects of timing of saturated fat and liquid sugar intake on obesity in rats and circadian rhythms in hypothalamic cells Joelle Oosterman, University of Amsterdam
- P260 Food scheduled induces rapid re-entrainment after a 6 hours phase advance in SCN and DMH
 Laura Ubaldo-Reyes , Facultad de Medicina, Universidad Nacional Autónoma de México
- P261 Gene-environment interactions of circadian gene variants and dietary intake or sleep duration for metabolic syndrome risk: a meta-analysis from CHARGE Consortium Hassan Dashti, Tufts University
- **P262** Food-intake at night on workdays is associated with cardiometabolic syndrome risk factors in night-shift nurses *Hylton Molzof, University of Alabama at Birmingham
- P263 Calorie restriction affects circadian clock gene expression Sonal Patel, Cleveland State University
- **P264** Hepatic steatosis due to meal intake during the rest period in rats Adrián Báez-Ruiz, Instituto de Investigaciones Biomédicas UNAM
- **P265** The role of melatonin receptor 1 in adipose tissue insulin sensitivity Sharon Owino, Morehouse School of Medicine
- **P266** Cold and hunger induce diurnality in a nocturnal mammal: function and mechanism Vincent van der Vinne, University of Groningen
- **P267** Chronic circadian disruption causes weight gain in mice Linda van Kerkhof, National Institute for Public Health and the Environment
- **P268** Effects of daily timing of food intake on the hypothalamic orexin system Anne-Loes Opperhuizen, Netherlands Institute for Neuroscience
- P269 Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides

 *Yaarit Adamovich, Weizmann Institute of Science
- P270 The effect of timed food pulses on human central and peripheral clock timing Sophie Wehrens, University of Surrey
- P271 Disturbances in the murine hepatic circadian clock in alcohol-induced hepatic steatosis *Peng Zhou, University of notre dame
- P272 Shaggy/GSK-3 Binds and Phosphorylates Timeless to Regulate Nuclear Accumulation of PER and TIM Deniz Top, The Rockefeller University
- P273 Neuropeptide DH31 and PDF receptors independently control daytime and night-onset temperature preference rhythm in Drosophila Tadahiro Goda, Cincinnati Children's Hospital Medical Center
- P274 Light entrainment of the Drosophila circadian clock by the visual system Francois Rouyer, CNRS
- P275 Salt-inducible kinase 3 regulates circadian period and phase by destabilization of PER2 protein
 Naoto Hayasaka, Yamaguchi University Graduate School of Medicine

- P276 Rapid resetting of the circadian clock in vasopressin V1a and V1b receptors-deficient mice

 Yoshiaki Yamaguchi, Kyoto University
- P277 A novel mechanism controlling re-setting speed of the circadian clock to environmental stimuli Violetta Pilorz, University of Manchester
- P278 The CRTC1–SIK1 pathway regulates entrainment of the circadian clock Aarti Jagannath, University of Oxford
- P279 Rest-activity cycle disturbances and sleep deprivation following severe traumatic brain injury:

 A case report Catherine Duclos, Hôpital du Sacré-Coeur de Montréal
- P280 Lighting effects within hospital patient rooms; a 24-h lighting rhythm can improve sleep and satisfaction Luc Schlangen, Philips Research
- P281 Measuring Circadian Entrainment in Five Species of Lemurs Mariana Figueiro, Rensselaer Polytechnic Institute
- P282 The Impact of Circadian Rhythms on Sports Performance: A Study of Travelling Sports Teams

 Lovemore Kunorozva, University of Cape town
- P283 Altered glutamatergic neurotransmission result in changes in cognitive behaviour and circadian rhythms Stuart Peirson, University of Oxford
- P284 A train of flashing blue light through closed eyelids phase shifts dim light melatonin onset in older adults living in a home setting Mariana Figueiro, Rensselaer Polytechnic Institute
- P285 Caloric Intake During the Biological Night and the Effect on 24h Energy Expenditure and Thermic Effect of Food **Andrew McHill, University of Colorado Boulder
- P286 Don't work around the clock—implementing a chronotype-based shift schedule *Celine Vetter, Ludwig-Maximilian-University Munich and Brigham and Women's Hospital and Harvard Medical School
- P287 The acute phase of moderate-severe traumatic brain injury: 24-hour melatonin and the rest activity-cycle *Catherine Duclos, Hôpital du Sacré-Coeur de Montréal
- P288 Circadian Modulation of Neuromotor Control Jennifer Gile, University of Washington
- **P289** The early sleep defect in Parkinson's disease model Drosophila Haruhisa Kawasaki, National Institute of Advanced Indutrial Science and Technology
- P290 Analysis of rest-activity rhythms in aged and Parkinson's disease model flies Yujiro Umezaki, Cincinnati Children's Hospital Medicam Center
- P291 Robust central molecular clock in the face of behavioural arrhythmia in a Drosophila model of Alzheimer's disease Ko-Fan Chen, University of Cambridge
- P292 Molecular analysis of early sleep abnormalities in Parkinson's disease Drosophila model Norio Ishida, National Institute of Advanced Science and Technology (AIST)
- P293 Circadian rhythms of the α subunit of Na+/K+-ATPase gene and protein in the epithelial glial cells and L2 interneurons of Drosophila melanogaster are partly controlled by PDF Milena Damulewicz, Jagiellonian University
- P294 Circadian Control of Gonadotropin-Inhibitory Hormone (GnIH) in the Preovulatory Luteinizing Hormone Surge Kimberly Russo, University of California
- P295 The Drosophila circadian clock is a variably coupled network of multiple peptidergic units Zepeng Yao, The University of Michigan

- P296 Progress toward a Functional Neuropeptidome for the Suprachiasmatic Nucleus Jennifer Mitchell, University of Illinois
- P297 Cell specific regulation of Pigment Dispersing Factor (PDF) in Drosophila melanogaster *Sudershana Nair, University of Tennessee
- P298 The synaptic connectivity of the sLNvs with clock and non-clock cells undergoes circadian structural remodeling Nicolas Pirez, Fundacion Instituto Leloir
- P299 MMP1 processing of the PDF neuropeptide regulates circadian structural plasticity of pacemaker neurons Fernanda Ceriani, Fundación Instituto Leloir- CONICET
- P300 Inhibitory Transmission in Circadian Pacemakers of Drosophila Lia Frenkel, Fundación Instituto Leloir—IIBBA- CONICET
- P301 Investigation of clock neuron interaction Drosophila melanogaster Saskia Eck, University of Würzburg
- P302 Molecular Mechanisms of Sympathetic Regulation of Chicken Pineal Melatonin Rhythms Ye Li, University of Kentucky
- P303 Daily Changes in GPCR Receptor Signaling In Circadian Pacemaker Neurons of Drosophila Markus Klose, Washington University
- P304 Reduced excitatory synaptic strength of nucleus accumbens neurons in the Clock Δ19 mouse

 Puja Parekh, University of Pittsburgh
- P305 LRP-1 modulates glutamate-induced phase shifting in the mouse SCN circadian clock Joanna Cooper, University of Tennesee
- P306 System-level coordination of downstream clocks through SCN compartment-specific cues

 Jennifer Evans, Marquette University
- P307 Inhibiting matrix metalloproteinases 2 and 9 phase shifts neuronal activity rhythms in the suprachiasmatic nucleus *Kathryn Abrahamsson, University of Tennessee
- P308 The arousal signal orexin suppresses daily hyperexcited electrical states in the mouse suprachiasmatic nuclei Mino Belle, University of Manchester
- P309 Roles of AVP-producing neurons in the central circadian pacemaker of the suprachiasmatic nucleus Michihiro Mieda, Kanazawa University
- P310 CIPC may be dispensable for circadian clock Zhipeng Qu, Model Animal Research Center, Nanjing University
- P311 Metabolic defects in Bmal1 knockout mice Céline Jouffe, Nestlé Institute of Health Sciences SA
- P312 Mathematical modeling reveals additional links between the circadian clock and the redox rhythm in Arabidopsis through a master immune regulator Sargis Karapetyan, Duke University
- P313 Measuring Connections in the Suprachiasmatic Nucleus using Information Theory Kirsten Meeker, University of California, Santa Barbara
- P314 Light-Induced PER1 and VIP Expression in Duper and Wild Type Hamsters Emily Manoogian, University of Massachusetts Amherst
- P315 A whole SCN model incorporating noise and population behavior Adam Stinchcombe, University of Michigan

- **P316** Detecting rhythmicity in biological data with RAIN Paul Thaben, Charite–Universitats medizin Berlin
- P317 Organism-level oscillation establishment from interacting cellular gene regulatory oscillations, theories and applications Yongqiang Wang, Uniniversity of California, Santa Barbara
- P319 Role of calcium and cAMP signaling in the prothoracic gland in the circadian timing of Drosophila emergence Angelina Palaciios-Munoz, Valparaiso University
- P320 3D spatiotemporal distribution of coupling-related peptides in the SCN Genki Kanda, Graduate School of Frontier Biosciences, Osaka University
- P321 Neuronal transcriptional networks regulated by human CLOCK Miles Fontenot, The University of Texas Southwestern Medical Center
- P322 Circadian rhythms exploration in patients with bilateral vestibular loss Tristan Martin, UNICAEN, COMETE, INSERM, Normandie University
- P323 Time restricted feeding and food anticipatory activity in an herbivorous subterranean rodent, the tuco-tuco (Ctenomys aff. knighti) Danilo Flores, Institute of Biosciences, University of São Paulo

Index of Authors

Abbott, Sabra | P14, P63

Abedi, Ali | P214

Abel, John | P138

Abrahamsson, Kathryn | P307

Abruzzi, Katharine | P175

Acimovic, Jure | P99

Ackermann, Katrin | S41

Acosta Rodríguez, Victoria A. | P69,

P102

Adamovich, Yaarit | P269

Afik, Shaked | S19

Agrawal, Parul | P154

Aguilar Roblero, Raúl | P132, P199

Agyekum, Boadi | S51

Aharoni, Asaph | P87

Ahmad, S. Tariq | P131

Ahnert-Hilger, Gudrun | S3

Akiyama, Shuji | Sy15

Alain, Samuel | P121

Albers, H. Elliott | P22, P25, P79,

P109

Albert, Joerg | P107

Aldrich, Benjamin | P194

Alejevski, Faredin | P274

Alibhai, Faisal | S46

Allen, David L | S49

Allen, Latoya | P45

Alnemy, Sydney | P230

Alon, Shahar | S92

Amacarelli, Mario | P17

Amaral, Danielle | P131

Legend

Sy = Symposium

S = Slide

P = Poster

Amasino, Richard M. | S74

Amdahl, Christoffer A. D. | P159

Amicarelli, Mario | P128

Amir, Shimon | P41, P212

Amunugama, Ravi | S49

Ananthasubramaniam, Bharath |

P137

Anderson, Clare | P12

Ang, Joo Ern | S41

Angadi, Veena | P120

Angeles-Castellanos, Manuel | P144,

P260

Antle, Micahel C. | P56, P116, P160,

P172, P197, P200

Antoch, Marina | Sy3

Aoki, Kazuyuki | P55

Aoki, Natsumi | P55, P167, P248

Arble, Deanna | S63

Archer, Simon | S37, S40, P270

Arey, Rachel | P62

Arpat, Bulak | P94, P181

Asher, Gad | Sy13, P87m P269

Ashwal-fluss, Reut | S19

Atamian, Hagop | S73

Atger, Florian | P101, P105

Atkins, Jr., Norman | P296

Aton, Sara | Sy11

Aviram, Rona | P87

Baba, Kenkichi | P49, P265, P306

Baek, Mokryun | S12

Báez-Ruiz, Adrián | P264

Bafna, Akanksha | S90

Baggs, Julie | P73

Bahn, Jae Hoon | P297

Baker, Denis | P270

Ballance, Heather | P179

Ballesta, Annabelle | P240

Balmert, Nathaniel | P1

Balteau, Evelyn | S68

Banham, Alison H. | P237

Bannerman, David | P283

Barish, Grant D. | P78

Barlow, Ida | S94

Barnhoorn, Sander | P241

Bartell, Paul | P208

Bartness, Timothy | P306

Bartok, Osnat | S19, S61

Baskerville, Joelle | P116

Bass, Joseph | Sv1, P78

Basu, Priyoneel | P116, P160

Basualdo, Maria del Carmen | P201,

P257

Bearden, Carrie | S83

Beaulieu-Laroche, Lou | S15

Bechtold, David | S10, S27, P277

Bedont, Joseph | S88

Beersma, Domien | P156, P158, P210

Belden, William | S56

Belle, Mino D.C. | S5, P34, P64, P66,

P308

Bell-Pedersen, Deborah | Sy9, S55,

S60, P152, P227

Belsham, Denise | P259

Ben Moshe, Zohar | S92

Bennett, Matthew | S24

Benning, Christoph | P235

Ben-Shlomo, Rachel | P244

Benton, Richard | P107

Bernabó, Guillermo | P300

Bernard, Francis | P279, P287

Bertagnolli, Mariane | P142

Bérubé, Marilie | P121

Besing, Rachel | P182

Bhagavatula, Geetha | P15

Bieler, Jonathan | S18

Biffinger, Justin | P95

Billia, Filio | S46 Chaix, Amandine | S64 Buijs, Rudolf | P264 Binz, Andrea | P239 Buijs, Ruud M | P81, P201, P225, Challet, Etienne | S65 P257, P260 Biswas, Sonia | P214 Champion, Matthew | P2 Bukowska-Strakova, Karolina | P293 Chang, Anne-Marie | P126 Bittman, Eric | P314 Bullard, Blair | P235 Bjes, Edward | S51 Chapman, C. Andrew | P212 Bunz, Melanie | P205 Blackshaw, Seth | S88 Chapman, Sarah | P148 Burt, David | S69, P255 Chatterjee, Abhishek | S50 Blais, Hélène | P279, P287 Burton, Lauren | S47, S71 Blau, Justin | S52, P193 Chaudhari, Amol | P263 Busza, Ania | S54 Bloch, Guy | Sy18 Chaves, Inês | P19, P84 Butler, Matthew | P125 Blum, Ian | S39, P118 Chavez Juarez, Jose Luis | P132 Butler, Rachel | P278 Cheeseman, James | S53, P217, Boehme, Shannon | P11 Byerly, Mardi | S88 P232 Boesiger, Brandon | P17 Caballero, Valeria | P171 Chellappa, Sarah | S37, S40, S68 Bogue, Wil | P50, P77 Cable, Erin | P254 Chélot, Elisabeth | S50, P274 Boivin, Antoine | P274 Caccin, Laura | P253 Chen, Zheng | Sy5 Boivin, Diane B. | S84 Cain, Sean | P12, P184 Chen, Benjamin P. | P28 Bolvin, Capucine | P104 Cajochen, Christian | P13 Chen, Chenghao | P107 Bonar, Nicolle | P2, P148 Campbell, ELizabeth | P45 Chen, Ko-Fan | P291 Bonsall, David | P106 Canal, Maria | S89 Chen, Lihong | P145, P220 Borjigin, Jimo | S47, S71, S71 Canessa, Paulo | S43 Chen, Samantha | P204 Bouchard-Cannon, Pascale | P46 Cannavo, Rosamaria | S18 Chen, Shih-Kuo | P53 Bourget-Murray, Jonathan | P212 Cao, Ruifeng | P41 Chen, Xianyun | P98 Bouyain, Samuel | S51 Carlson, Karen | P131 Chen, Xiao | S85 Boyle, Lara | P195 Carrasquillo, Yarimar | P189 Chen, Zhen | S86 Braam, Janet | Sy4 Casiraghi, LP | P83 Cheng, Chao | S55 Brager, Allison | S42, P218 Caspi, Avshalom | S67 Cheng, Hai-Ying Mary | P46 Brancaccio, Marco | S6, P203 Cassone, Vincent | P207, P256, P302 Cheon, Solmi | P36 Branecky, Katrina | P168 Castaño, Eduardo | P299 Chesham, Johanna E. | S6 Bretschneider, Till | S17 Chew, Justin | S78 Castanon-Cervantes, Oscar | P222, Brett, Teubner | P306 P223, P306 Chiang, John Y.L. | P11 Broadie, Kendal | P206 Castello, Alfredo | P103 Chiesa, JJ | P83 Brocardo, Lucila | P222 Caster, Stephen | S60 Chinnappareddy, Nirmala | S46 Bromley, Claire | S95 Castro, Joel | P214 Chiu, Chi-Hua | P100 Brooks, Elisabeth | S89 Catterall, William A. | P159 Chiu, Joanna | Sy12, P155, P177 Brown, Laurence | P127, P278 Causton, Helen | S58 Chizeck, Howard | P288 Brown, Steven A. |Sy9, S82, P74 Cázarez-Márquez, Fernando | P225, Chockanathan, Udaysankar | S78 Brown, Timothy | S27, P20, P66, P264 Choe, Joonho | S38, P149 P196, P198 Ceriani, Fernanda | P191, P298, Brunner, Michael | Sy13, S57, P146, Chong, Christin | P15 P299, P300 P234 Christian, Helen | S69 Cermakian, Nicolas | S15, S84 Buchler, Nicolas | P312 Christou, Skevoulla | P270 Cesbron, François | S57, P234 Buhr, Ethan | S25 Clark, Casey | P214 Cha, Joon-Yung | P9

Buijs, Frederik | P201

Clark, Erin | P3 Davies, Nathaniel | S90, P75 Du, Ngoc-Hien | P94, P173 Davies, Sarah | S41 Clerx, William | P187 Duclos, Catherine | P279, P287 Cloutier, Anik | P142 Davis, Fred | P195 Duffield, Giles I P1, P2, P3, P147, P148, P271, P278 Cockrell, Allison | P95 Davis, Julian | S69, P255 Duge, Leanne | P186 Cohen, Susan | S77 de Groot, Marleen | P97 Dugovic, Christine | P57 Colwell, Christopher |Sy14, P24, de la Iglesia, Horacio | Sy11, P159, P186, P288 Duhart, Jose | P222 P188 Connick, Elizabeth | P285 de Lange, Elizabeth | S7 Dulak, Józef | P293 De Matos, Mara | P94 Dulong, Sandrine | P240 Contreras-Alcantara, Susana | P49, P265 De Paula, Renato | P152 Dumitru, Mircea | P242 Coogan, Andrew | P220, P226 De Pittà, Cristiano | P253 Dumont, Marie | P279, P287 Coomans, Claudia | P172 de Ruyter, Boris | P280 Dumont, Stephanie | S65 Cooper, Howard | S68 De Villiers, Kerry-Lee | P217 Duncan, Marilyn | P143 Cooper, Joanna | P305 de, Joydeep | S50 dunlap, jay | Sy12, S12, S55, P152 Cormack, Devon | P135 Deboer, Tom | S29, P140 Duong, Hao A. | S22 Corrà, Samantha | P253 DeBruyne, Jason | P73 Dupre, Sandrine | P255 Costa, Rodolfo | P253 Delaunay, Franck | S17 Durón, Cintia | P257 Couch, Yvonne | P278 Delguedre, Christian | S68 Duvall, Laura | P303 Courtemanche, Richard | P212 Demas, James | P39 Dzirasa, Kafui | P304 Crabbe, John | P133 Denise, Pierre | P322 Earnest, David | S62, P166 Crane, Brian | Sy15 Dennery, Phyllis | P47 Eastman, Charmane | S80 Creux, Nicky | S73 Depetris-Chauvin, Ana | P298 Eck, Saskia | P301 Criscuolo, François | S65 DeWoskin, Daniel | S35 Edgar, Nicole | P8, P62 Crosier, Caitlin | P17 Dibner, Charna | P86 Edgar, Rachel | S45, P6 Crowley, Stephanie | S80 Dickmeis, Thomas | S96 Edwards, Jessica K. | S6 Crowther, Damian | P291 Edwards, Mathew | P203 Diehl, Jonathan | P155 Cuesta, Marc | S84 Efstathiou, Stacey | S45 Diekman, Casey | P136 Cunningham, Peter | S10, P277 Diemer, Tanja | S23 Egil, Martin | Sy15 Curran, Kristen | P45 Dijk, Derk-Jan | S37, S40 Ehlen, J. Christopher | S42, P218 Currie, Terrence | P154 Diotel, Nicolas | S96 Ellamil, Melissa | P184 Curtis, Annie | P220 Dissel, Stephane | P120 Emerson, Jillian M. | S55 Cusick, Kathleen | P95 Emery, Patrick | Sy6, S50, S54, P115 Dobb, Rachel | P198 Czeisler, Charles | P10, P126, P163, Emoto-Yamamoto, Yumi | S7 Doi, Masao | S21 P187, P223 Dokkedal, V | P323 Erb, Marcella | S77 Dallmann, Robert | S82 Dominguez-Monzon, Gabriela | P199 Escobar, Carolina | Sy16, P81, P201 Damulewicz, Milena | P293 Esser, Karyn | S42 Dong, Xinnian Sy3, P312 Dasgupta, Arko | S55 Dong, Zhen | P139 Estrada, Daniel | S75 Dashti, Hassan | P261 Evans, Jennifer | P89, P222, P306 Donlea, Jeff | P120 Dattolo, Teresa | P91, P172 Dovzhenok, Andrey | S12 Evantal, Naveh | S19 Davenne, Damien | P322 Doyle, Francis | S34, P138, P317 Ewer, John | P319 Davidson, Alec | P222, P223, P306

Dressman, Marlene | S70

Davies, Elaine | P217

Ewers, Brent E. | S74

Fagundes, Caio | P220 Glass, J. David | P17, P128, P130 Fu, Ying-Hui | P15, P58, P122, P123, P221 Fan, Jin-Yuan | S51 GLINA, AIDAN | P244 Fukada, Yoshitaka | P173, P236, P275 Fan, Junmei | S33 Gobet, Cedric | S18 Fulga, Tudor | P215 Fan, Zenghua | P178 Goda, Ryosei | P250 Furuse, Mitsuhiro | P250 Farre, Eva | P235 Goda, Tadahiro | P273 Fustin, Jean-Michel | S21 Farrow, Stuart | S44, P219 Golden, Susan | Sy1, S77 Gabel, Virginie | P13 Goldman-Mellor, Sidra | S67 Fecteau, Matthew | P129 Gachon, Frédéric | S96, P101, P104, Fedele, Giorgio | P35 Goldsmith, Charles | P227 P105, P311 Golik, Marina | P87, P269 Feeney, Kevin A. | S8 Gaddameedhi, Shobhan | P246 Feillet, Celine | S17 Golombek, Diego Andres | P83, Gaggioni, Giulia | S37, S40 P222 Fernandez, Diego | P53 Gall, Andrew | P112 Gondan, Matthias | P48 Fernandez-Gamba, Agata | P299 Gallardo, Christian | P162 Gong, Changxia | S87 Ferrell, Jessica | P11 Gallistel, Charles | S53 Goodwin, Patricia | P215 Figueiredo, Luisa M | P21 Gamble, Karen | S2, P80, P182, P192, Gordijn, Marijke | P156, P158 Figueiro, Mariana | S81, P281, P284 P262 Gorman, Michael | P110, P111, P117 Finegold, Milton | S13 Gandhi, Avni V. | S93 Gorné, Lucas D. | P102 Finkielstein, Carla | S16 Gao, Peng | P28, P38 Gorostiza, Ezequiel Axel | P298, Fischer, Dorothee | P286 Garbarino-Pico, Eduardo | P69 P299 Fischer, Tamás | P146 Garber, Manuel | S19 Gorter, Jenke | P266 FitzGerald, Garret | P85, P145, P220, Garren, Emma | P32 Gos, Pascal | S30 P224 Gaspar, Ludmila | P74 Gosselin, Nadia | P279, P287 Fixaris, Michael | P133 Gaten, Ted | P75 Gosselin, Pauline | P103 Fliers, Eric | P259, P268 Gatfield, David | S18, P94, P181 Gothilf, Yoav | S92 Floessner, Theresa | P210 Gatti, Silvia | P278 gotoh, tetsuya | S16 Flores, Danilo | P323 Geerdinck, Leonie | P280 Gourmelen, Sylviane | S65 Flynn-Evans, Erin | P195 Geerdink, Moniek | P158 Granados-Fuentes, Daniel | P189 Foley, Niamh | P220 George, Gary | P3 Grant, Gregory | P145 Fontenot, Miles | P321 Ghazi, John | P1, P2 Gratton, Alain | S39 Foo, Mathias | S76, P283 Ghosh, Marcus | S95 Grebler, Rudi | S72 Foppen, Ewout | P259, P268 Gibbs, Julie | S44, P236 Green, Carla B. | P28, P38 Forger, Daniel | S24, S35, P119, Gibbs, Michelle | P270 Green, Edward | P35 P216, P315 Gibson, Jay | S33 Green, Noah | P59 Foster, Russell | P30, P52, P127, P278 Gile, Jennifer J. | P159, P288 Greenham, Kathleen M. | S74 Foulkes, Nick | Sy17 Gillette, Martha | Sy2 Francey, Lauren J | P42 Greggers, Uwe | S53 Gillette, Martha | S31, P296 Gregory, Alice M. | S67 Franklin, Kathleen | P143 Gillman, Andrea | P8 Griffith, Leslie | Sy8, P215, P243 Frederick, Ariana | P212 Giménez, Marina C | P158, P280 Fredrickson, Taylor | P17 Gronfier, Claude | P126 Giossi, Joseph | P208 Freimer, Nelson | S83 Groot Koerkamp, Marian | P84 Giros, Bruno | S39, P118 Grosbellet, Edith | S65 Freitag, Michael | S60 Giusto, Norma M. | P102 Frenkel, Lia | P298, P300 Gu, Changgui | P140

Glander, Kenneth | P281

Fu, Loning | S13

Hayes, Marie | P214 Howarth, Michael | P66 Guerrero-Vargas, Natalí | P81, P225, P257 Hoyle, Ned | P70 Hazelwood, Curtis | P113 Guido, Mario E. | P69, P102 Hébert, Marc | P121 Hsu, Pei-Ken | P122 Gumz, Michelle | S48 Helfrich-Förster, Charlotte | S72, Hu, Jia | P209 Guo, Fang | P16 P249, P290, P300, P301 Hu, Kun | Sy6, P60, P141 Guo, Jinhu | P98 Heller, H.Craig | P164 Huang, Guocun | S9 Gustafson, Chelsea | S59, P37 Henriksson, Emma | P29 Huang, Guodong | P209 Gustafson, Kyle | S18, P180 Henson, Michael | P134 Huang, Hung-Chung | P71 Hentze, Matthias | P103 Guttman, Mitchell | S19 Huang, Jian | S91 Herestofa, Alexandra | P208 Guzman-Ruiz, Mara | P257 Huang, Josh | S33 Ha, Nati | S57, P234 Herman, James | S63 Huang, Moli | P108 Hermann-Luibl, Christiane | P300 Hablitz, Lauren | S2, P182 Huang, Roya | P168 Hadley, Morgan | P45 Hermanstyne, Tracey | P189, P190 Huang, Wenyu | P78 Hall, David | S51 Herremans, Hannelore | P280 Huang, Yanhua | P304 Hertel, Stefanie | P68 Hallows, William | P15, P123 Huang, Yong | P15 Hamada, Fumika | Sy10, P273 Herzel, Hanspeter | Sy2, P137 Huber, Anne-Laure | P238 Han, Xianlin | P269 Herzog, Erik | S88, P137, P189, P190, Huber, Kimberly | S33 P204, P239 Hanan, Mor | S61 Hughes, Alun T.L. | P34, S5 Hevia, Montserrat | S43 Hankins, Mark | P278 Hughes, Michael | P179 Hietakangas, Ville | S61 Hannibal, Jens | P161 Hull, Joseph | P10, P163 Higgins, Janine | P285 Haraguchi, Atsushi | P5, P55, P167, Hummel, Alyssa | P148 Hiragaki, Susumu | P265 P248 Hummer, Daniel | P22, P109 Hirano, Arisa | P275 Hardin, Paul | Sy3, S49, S50, P43, Humphries, Paul | P82 P154 Hirota, Tsuyoshi | S96 Hunt, Benjamin | P75 Harmer, Stacey | Sy7 Hirsh, Jay | P32 Hurley, Jennifer M. | S55 Harms, Emily | P272 Hoekman, Marco | P84 Hussain, Mohammad | P125 Harpole, Clifford | P256 Hoffman, Daniel | P8 Hut, Roelof | S28, P158, P210, P266 Harrington, Mary | P106 Hogenesch, John | Sy13 le, Naomi | P160 Harrison, Liz | P110 Hogenesch, John | P42, P179 Ikeda, Yuko | P55, P165, P167, P248 Harrison, Paul | P283 Holland, Jenna | S63 Ikegami, Keisuke | P251 Hartman, Robin | S7 Holmes, Ben | S41 Imai, Shin-Ichiro | Sy6 Harvey, Stacy L. | P237 Holstege, Frank | P84 Imai, Yuzuru | P290 Hasegawa, Emi | P309 Hong, Christian | S12 Imaizumi, Takato | S75 Hastings, Michael | Sy17, S6, P76, Honma, Sato | P309 P203 Isagawa, Takayuki | S21 Hoover, Robert | S48 Hatori, Megumi | P39 Isherwood, Cheryl | P270 Horvat-Gordon, Maria | P208 Hattar, Samer | S26, S88, P53, P54 Ishida, Norio | P292 Hou, Tim | P147 Hattori, Nobutaka | P290 ISHIZUKA, KATHERINE J. | P244 Houdek, Pavel | P44 Hattori, Yuta | P248 ITO, Kumpei | P289, P292 Houk, Cameron | P2 Hauger, Richard | P61 Iwamoto, Ayaka | P250 Houl, Jerry H | S49, P43

Houle, Jérôme | P121

Hoveijn, Igor | P158

Hayasaka, Naoto | P275

Hayashi, Hida | S21

Iwasaki, Wataru | P173

Iyer, Rajashekar | S31

Katchy, Chinenye | S13 Kobayashi, Yumiko | P78, P78 Izumo, Mariko | S4 Katsuyama, Ângela | P186 Jackson, Anthony | P277 Koh-hei, Koh-hei | P202 Jackson, Chad | P59 Kawai, Misato | P250 Kohler, Malcolm | S82 Jaeger, Cassie | P169 Kawasaki, Haruhisa | P289 Koike, Nobuya | S86 Jagannath, Aarti | P278 Kawase, Takahiro | P250 Kokoeva, Maia V. | S39 Jang, Au Reum | P42 Kay, Steve A | S96 Kondo, Takao | Sy12 Kondratov, Roman | P263 Jang, Donghoon | S38 Kayser, Manfred | S41 Janich, Peggy | P181 Kearney, Louise | S44 Konopka, Genevieve | P321 Jansen, Heiko | P252 Keenan, William | P54 Koole, Timo | P156 Jaumouillé, Edouard | P233 Keightley, Andrew | S51 Kopalle, Hema M. | P237 Keith, Spencer | P17 Korencic, Anja | P99 Jeanne, Nerbonne | P189 Jennings, Kimberly | P294 Keller, Neil L. | P296 Korge, Sandra | S3 Kornfeld-Schor, Noga | Sy18 Jeong, Mi-Jeong | P174 Kennedy-Smith, Andrew | P217 Jin, Hua | P176 Kerndt, Thomas | P45 Kosir, Rok | P99 Johnson, Jeffrey | P82 Kerr, Kimberly | P230 Kramer, Achim | Sy6, S3, P7, P228 Johnson, Monica E. | P33 Kervezee, Laura | S7 Kraut-Cohen, Judith | P87, P269 Johnson, Nicole | P45 Kriebs, Anna | S14, P29, P238 Kettner, Nicole | S13 Johnson, Oliver | P288 Khan, Sanjoy | S59 Kriegsfeld, Lance | P294 Johnson, Russell | P80, P182, P192, Khapre, Rohini | P263 Krishnan, Harini | P185 P262 Kiessling, Silke | S15 Kronauer, Richard | P126 Johnston, Jonathan | P270 Kikuchi, Yosuke | P5 Krusche, Peter | S17 Jolley, Craig | P18 Kilpatrick, Zachary | S24 Krushelnytskyy, Misha | P186 Jones, Chris | P58 Kim, Hee-Dae | P36 Kudo, Takashi | P24, P188 Jones, Christopher | P15 Kim, Jae Kyoung | S24 Kuijpers, Petra | P280 Jones, Geoffrey | P281 Kim, Jin A | P174 Kuljis, Dika | P24 Jones, Jeff | S1 Kumar, Vinod | S11 Kim, Kyungjin | P36 Jones, Richard | S49 Kim, Mi Ri | P9 Kumar, Vivek | P96, P97 Jordan, Sabine | S14, P238 Kim, Min-Gab | P9 Kunorozva, Lovemore | P282 Josi, Krešimir | S24 Kim, Minkyung | P149 Kunst, Michael | P273 Jouffe, Céline | P101, P311 Kim, Pan-Jun | S76 Kurien, Philip | P15, P221 Jung, In Jung | P9 Kim, Sam Moon | S62, P166 Kuriki, Daisuke | P5 Kadener, Sebastian | S19, S61, P193, Kim, Seong Jae | P63 Kwok, Rosanna | P177 P231 Kim, Woe-Yeon | P9 Kyriacou, Charalambos | P35, P75, Kaern, Mads | P46 P76, P253, P258 Kingsbury, Nathaniel | P134 Kahana, Chaim | P87 la Fleur, Susanne | P259, P268 Kirszenblat, Leonie | P120 Kakeya, Hideaki | S21 La, Janet | P294 Klarhöfer, Markus | P13 Kalsbeek, Andries | P259, P268 Laberge, Luc | P121 Klerman, Elizabeth |Sy11, P10, P126, Kamagata, Mayo | P248 P153, P187, P213 Labrecque, Nathalie | S15 Kamath, Tushar | P10 Klichko, Vladimir | P230 Lahens, Nicholas | P179 Kanda, Genki | P320 Klose, Markus | P303 Lam, Vu | P155 Karapetyan, Sargis | P312

Ko, Ben | S48

Karunarathna, Nirmala | P152

SRBR 2014 CONFERENCE PROGRAM

Lamaze, Angélique | S50

Lamb, Teresa | P227 Li, Weihua | P303 Ludin, Nicola | P217 Lamba, Pallavi | P115 Li, Xiaodong | S87 Lueck, Sarah | S20 Lamia, Katja | S14, P29, P238 Li, Xiao-Mei | P242 Lukaszewski, Marie-Amélie | P142 Li, Yan | P71, P72 Luo, Weifei | P176 Landgraf, Dominic | P65, S15, S23 Lang, Veronika | P7 Li, Ye | P302 Luxen, Andre | S68 Langel, Jennifer | P161 Li, Ying | P155, P177 Ly, Julien | S37, S40, S68 Lapinsky, Andrew | P235 Liang, Xiaodi | P98 Lyons, Lisa | P185 Liangpunsakul, Suthat | P271 Mabery, Eric | P82 Laranjeiro, Ricardo | P247 Licamele, Louis | S70 Mahesh, Guruswamy | S49 Larkin, Tony | P22, P109 Larrondo, Luis F | P171, S43 Lim, Chunghun | S38, P149 Maier, Bert | Sy3, P7, P228 Lavedan, Christian | S70 Lim, Sookkyung | S12 Maire, Micheline | P13 Leach, Greg | P23 Lin, Jenny | S78 Malinow, Roberto | P65 Lear, Bridget | P194 Mallon, Ann-Marie | S6 Lin, Shu-Ting | P58 Lindsay, Jonathan | P130 Manabe, Ichiro | S21 Leasure, Kassandra | P17 Lee, Cheng-Chi | P245 Lipton, Jonathan | P195 Mankowski, Piotr | P213 Manoogian, Emily | P314 Lee, Choogon | S13 Lipzen, Anna | P123 Lee, Hsiau-Wei | S59, P37 Liu, Yi | Sy6 Mantes, Edgar | P50, P77 Lee, Ji Eun | P296 Liu, Andrew | S59, P37, P41, P51 Maguet, Pierre | S37, S40 Lee, Kyung-Jong | P28 Liu, Chao | P209 Marcheva, Biliana | P78 Marpegan, Luciano | P83, P222 Lee, Michael | P10 liu, jingjing | S16 Liu, Tianxin | P43 Lee, Sang Yeol | P9 Martial, Franck | S27 Lee, Soo In | P174 Liu, Tiecheng | S47, S71 Martin, Béatrice | S50 Martin, Eva | P101, P105, P311 Lee, Yool | P42 Liu, Wei | P98 Martin, Jeanne Sophie | P121 Leech, Jarrett | P195 Liu, Zhiwei | P108, P139 Leevy, W. Matthew | P148 Liu, Zonghua | P140 Martin, Tristan | P322 Lefai, Etienne | P86 Lo, Men-Tzung | P141 Martinez, Fernando | P61 Leffers, Pieter | P280 Łoboda, Agnieszka | P293 Martinez-Lozano Sinues, Pablo | S82 Legan, Sandra | P254 Lockley, Steven | S70, P10, P114, Martino, Tami | S46 P126, P153, P163, P187, P223 LeGates, Tara | S88 Marz, Karla | P33 Logan, Ryan | P8, P62 Lehmann, Konstantin | S53 Massimini, Marcello | S37, S40 Loh, Dawn | P24 Lei, Anna | P177 mathew, deepa | P148 Lokhandwala, Jameela | P31 Matsumono, Tomoko | P245 Leise, Tanya | P252, P306 Lomas, David | P291 Matsumoto, Tsuguhiro | S86 Leming, Matthew | P2 Long, Jaimie | S23 Lensie, Jessica | P100 Mauvoisin, Daniel | P101 Lope, Chelsea | P45 Leone, Maria Juliana | P222 Maywood, Elizabeth | P30, S6 Lopez, Ana | P61 Leon-Mercado, Luis | P257 Mazuski, Cristina | P204 Loros, Jennifer | S12, S55 Mazzotta, Gabriella | P253 Lescano, Juan | P69 Lou, Ping | S74 Lévi, Francis | P240, P242, S17 McClung, C. Robertson | S74

Loudon, Andrew | S44, S69, P219,

Lucas, Robert | Sy10, P20, S27, P198

P255, P277

Lu, Xinguo | P194

Li, Chengwei | S87

Li, Honggui | S62

Li, Duan | S47

McClung, Colleen | Sy14, P8, P62,

McCluskie, Kerryn | P82

P304

McConchie, Olivia | P12 McCulley III, Walter | P129, P133 McDonald, Kathleen | P147 McDonnell, Scott | S64 McHill, Andrew | P285 McKibbon, Reid | P197 McLoughlin, Sarah | P224 McMahon, Douglas | S1, P51, P59, P206 McMahon, Lori | P182 McNeill, Elizabeth | P215 McNeill, John (Mac) | P22, P25, P79 McNeilly, Alan | S69, P255 Meeker, Kirsten | P313 Meekes, Gaby | P280 Mehlmann, Joana | P286 Meijer, Johanna | S7, S29, P140, Melanson, Edward | P285 Melencion, Andrew | P9 Meliska, Charles | P61 Meller, Rob | P218 Mendoza-Viveos, Lucia | P46 Menegazzi, Pamela | S72, P249 Meng, Qing-Jun | P236 Menon, David K | P279, P287 Menzel, Randolf | S53 Meredith, Andrea | Sy2 Mermet, Jérôme | P180 Merrow, Martha | Sy4 Merry, Alan | P217 Meszaros, Krisztina | P48 Meyer, Christelle | S68 Mezan, Shaul | P193, P231 Michael, Alicia K. | P237 Michalik, Mateusz | P89, P92, P162 Michard-Vanhée, Christine | P274 Michel, Stephan | Sy6, P140 Middleton, Benita | S41, P270 Mieda, Michihiro | P309 Miedzinska, Katarzyna | S69, P255

Milev, Nikolay | S8 Millar, Craig | S53 Millius, Arthur | P27 Mintz, Eric | P90, P100, P170 Mistlberger, Ralph | P89, P91, P92, P113, P162, P172 Mitchell, Andrew | P306 Mitchell, Jennifer | P296 Miu, Phuong | S64 Miyoshi, Yuka | P275 Mizaheri, Sina | P32 Mizoro, Yasutaka | P276 Moffitt, Terrie E. | S67 Mohamed, Yusef | P125 Mohammad-Djafari, Ali | P242 Mohawk, Jennifer | P97 Molyneux, Penny | P106 Molzof, Hylton | S2, P262 Mongrain, Valerie | S14 Montelli, Stefano | P253 Moon, Yi-Seul | P174 Moore, David | S13 Moquin, Luc | S39 Moran, Rosalyn | S40 Moran-Ramos, Sofia | P81 Moresco, James | S14, P238 Morimoto, Miki | P125 Morioka, Masaki | S21 Morton, Jenny | Sy14 Mosser, Eric | S93 Mouland, Josh | S27, P20 Moussay, Sebastien | P322 Moynagh, Paul | P226 Muller, Hanna | S43 Muñoz-Guzmán, Felipe | P171 Muraro, Nara | P191, P300 Mure, Ludovic | P39 Murphy, Jessica | P90, P170 Musiek, Erik | Sy14 Mymko, Ryan | P17 Na, Li | S56

Nachnani, Rahul | S23 Naef, Félix | P101, P180, S18 Nagano, Mamoru | P202 Nagoshi, Emi | P233 Nahmias, Yaakov | S61 Nair, Sudershana | P297 Najjar, Raymond | P164 Nakamura, Wataru | P128 Napolitano, Julia | P314 Nascimento, Nara | P131 Nash, Gina | P131 Nathan, Ashwin | P195 Nelson, O. Lynne | P252 Nerbonne, Jeanne | P190 Neufeld-Cohen, Adi | P269 Newton, Linsey | P235 Nguyen, Madelena | S14, P238 Nicholl, Michael | S45 Nijman, Romana | P84 Nishimura, Shinichi | S21 Nishino, Seiji | P58 Nitabach, Michael | P273 Noguchi, Takako | P117 Nolan, Patrick M. | Sy16, S6, S67 Nugent, Marie | P26 Nunez, Antonio | P112 Nuyt, Anne Monique | P142 O'Brien, Conor | P187 Oda, Gisele | P323 Oehler, Michael | S57 Oh, Yangkyun | S38 Ohtsu, Teiji | P165, P167, P248 Ojha, Nikita | P227 Okada, Kazuya | P55 Okamoto, Hitoshi | P309 Okamura, Hitoshi | S21, P276, Sy1 O'Keeffe, Saileog | P226 Oklejewicz, Malgorzata | P241 Okyar, Alper | P240 Olivares-Yañez, Consuelo | P151

Miki, Takao | P245

Omura, Chiaki | P78

O'Neill, John | S8, S45, S58, P6, P70 Pasquaré, Susana J. | P102 Pirlo, Russell | P95 Patel, Dhruval | S89 Pittman-Polletta, Benjamin | P141 O'Neill, Luke | P220 Ono, Daisuke | P309 Patel, Sonal | P263 Plitnick, Barbara | P284 Pogliano, Joe | S77 Oosterman, Joelle | P259 Paton, Robert | P255, S69 Poliner, Eric | P235 Opiol, Hanna | P89 Pattanayak, Gopal K. | P67 Opperhuizen, Anne-Loes | P268 Patton, Andrew | P203 Polymeropoulos, Mihael | S70 Ordovas, Jose M. | P261 Pongsawakul, Pagkapol Y. | P33 Patton, Danica | P91, P92, P172 Paul, Jodi | P80, P182, P192 Orff, Henry | P61 Popay, Tessa | P232 Possidente, Bernard | P291 Osburn, Lauren | P182 Paul, Ketema | S42, P218 Oster, Henrik | Sy16 Paulouse, Jiffin | P256 Potvin, Marie-Julie | P279 Pavlovski, Ilya | P89, P113 O'Sullivan, Lynne | S46 Poulton, Richie | S67 Otsuka, Tsuyoshi | P250 Pawley, Matthew | S53, P232 Prange, Lauren | P120 Owino, Sharon | P265 Pegoraro, Mirko | S90, P258 Prendergast, Brian | P254 Peirson, Stuart | P30, P52, P127, Prete, Frederick | P50, P77 Ozaki, Haruka | P173 P278, P283 Ozburn, Angela | P62 Price, Jeffrey | S51 Pejchal, Martina | S4 Pritchett, David | P283 Özkaya, Özge | P75 Pekovic-Vaughan, Vanja | P236 Padgaonkar, Namita | P294 Prober, David A. | Sy8, S93 Pendergast, Julie | P88, P168 Pagani, Lucia | S83 Prosenc Zmrzljak, Ursula | P99 Peng, Xiaoli | P254 Palaciios-Munoz, Angelina | P319 Prospero, Oscar Prospero | P132 Penn, John | P51 Prosser, Rebecca | P93, P130, P305, Paladino, Natalia | P222 Pennacchio, Len | P15 P307 PALMERI, KARLA J. | P244 Pennacchio, Len A. | P123 Proulx, Christophe D. | P65 Palsson-McDermott, Eva | P220 Pruess, Linda | P48 Pennings, Jeroen | S66 Panchy, Nick | P235 Perelis, Mark | P78 Ptacek, Louis | Sy10, P15, P58, P122, Panda, Satchidananda | Sy5, S11, P123, P221 Perez-Tilve, Diego | S63 S64, P39, P108 Pudasaini, Ashutosh | P150 Pandey, Varun | S61 Perrin, Dimitri | P18 Pusterla, Julio | P69 Papp, Stephanie | S14, P238 Perrin, Laurent | P86 Pyle, W. Glen | S46 Paquet, Jean | P279, P287 Perse, Martina | P99 Pyne, Dylon | P131 Parekh, Puja | P304 Petersen, Christian | P91, P92 Pywell, Cameron | P148, P271 Pariollaud, Marie | P219 Petersen, Emily | P95 Pyza, Elzbieta | P293 Peterson, Cynthia | P305 Park, Hee Jin | P9 Qu, Chunxiang | P209 Petsakou, Afroditi | S52 Park, Jae H. | P297 QU, ZHIPENG | P310 Park, Keunhee | S38 Petzold, Linda | P313 Quadroni, Manfredo | P101 Park, Noheon | P36 Pévet, Paul | S65 Quarck, Gaelle | P322 Park, Timothy | P82 Phillips, Andrew | P187, P213 Quinn, Emily | P15 Phillips, Christophe | S40, S68 Parker, Nickki | S63 Quinn, Marie-Josée | P287 Parry, Barbara | P61 Phong, Connie | P67 Radyuk, Svetlana | P230 Piekarski, David | P294 Parsley, Nicole | P37 Rae, Dale | P282 Parsons, Michael | S6, S67 Piggins, Hugh | S5, P34, P64, P66, Rahman, Shadab | P10, P126, P153, P308 Partch, Carrie | Sy15, S59, P37, P237 P223 Pilorz, Violetta | P52, P266, P277 Paschos, Georgios | P85, P145 Raizen, David |Sy8

Pirez, Nicolas | P298

Ralph, Martin | P184 Ramachandran, Ramesh | P208 Ramanathan, Chidambaram | S59 Ramírez-Corona, Arlen | P257 Ramírez-Plascencia, Oscar | P257 Ramkisoensing, Ashna | P140 Rand, David | S17 Rani, Sangeeta | S11 Rantz, Tim | P82 Rashidmanesh, Karim | S95 Rastegar, Sepand | S96 Rastogi, Ashutosh | P90 Ratcliffe, William | P80 Raver, Christine | S63 Rawashdeh, Omar | P184 Ray, David |Sy5, S44, P219 Raynaud, Florence | S41 Rea, Mark | S81, P281, P284 Reddy, Akhilesh B. | S8, P6, S45 Reichert, Carolin F. | P13 Reid, Kathryn | P14, P63, P123 Reid, Michaela | P120 Ren, Chi | P303 Renner, Travis | P82 Reus, Victor | S83 Revell, Victoria | S41, P270 Rey, Guillaume | S8 Reyes, Teresa | P85 Richards, Jacob | S48 Riede, Sjaak (J.) | S28, P266 Rieger, Dirk | P205, P301 Riegler, Erin | P82 Riemersma - van der Lek, Rixt | P60 Rihel, Jason | S94, S95 Rijksen, Yvonne | P241

Rijo-Ferreira, Filipa | P21 Ringeisen, Bradley | P95 Ritz, Eberhard | P48 Robbins, Charles | P252 Robinson, Ian | S8, S45 Robles, Maria S. | S22 70

Robles-Murguia, Maricela | P147 Roche, Véronique | P242 Roden, Laura | P157, P282 Rodenburg, Wendy | S66, P267 Roenneberg, Till | S79, P286 Rogers, Courtney | P182 Rohling, Jos | P140 Rosanova, Mario | S37 Rosato, Ezio | P26, P35, P75 Rosbash, Michael | Sy12, S85, P16, P175, P176, P230 Rosensweig, Clark | P28, P38 Rosenwasser, Alan | P129, P133 Ross, Ruth | P271 Rousso Noori, Liat | P87, P269 Rouyer, Francois | S50, P274 Rozman, Damjana | P99 Rubin, Josh | P239 Rund, Samuel | P1, P2, P3 Russo, Kimberly | P294 Rust, Michael J. | P67, S78 S. Gesto, Joao | P258 Sabath, Elizabeth | P201, P257 Sachs, Matthew | S60

Saer, Ben | S69 Saez, Lino | P272 Sahin, Mustafa | P195 SAHOO, DEBASHIS | P244 Saigoh, Kazumasa | P58 Saigoh, Noriko | P58 Saint-Charles, Alexandra | P274

Sakhi, Kanwal | P66 Sakurai, Takeshi | P309 Salvador, Gabriela A. | P102 Sammons, Patrick | S59, P237 Samuels, Rayna | S5

Sakai, Noriaki | P58

Sancar, Aziz | P246 Sancar, Cigdem | P146, P234 Sancar, Gencer | S57, P234 Sandoval, Darleen | S63

Sanghani, Harshmeena | P64 Santhi, Navantara | P126 santos, carlo | S16 Sapsis, Themistoklis | S52 Sarasso, Simone | S37 Sasaki, Hiroyuki | P165, P248 Sasseville, Alexandre | P121 Sassone-Corsi, Paolo |Sy1 Schaefer, Franz | P48 Scheer, Frank | Sy16, P60, P223 Scheffler, Klaus | P13 Schellevis, Raymond | P84 Schibler, Ueli | S30, P103 Schier, Alexander | S94 Schirmer, Aaron | P50, P77 Schlangen, Luc | S28, P280 Schlichting, Matthias | S72, P249 Schmidt, Christina | P13 Schutter, Rick | P156 Seear, Paul | P75 Seeley, Randy | S63 Seggio, Joseph | P131 Segovia, Jose | P199 Sehgal, Amita | Sy6, P42 Selby, Christopher | P246

Sengupta, Shaon | P47 Serkh, Kirill | P119 Service, Susan | S83 Sethi, Siddharth | S6 Shafer, Orie | Sy17, P40, P295

Shalev, Moran | P87 Shan, Yongli | S9, P71, P72 Shao, Jingping | P148 Sharma, Vijay | Sy18 Sharma, Vishal | P243 Sharp, Trevor | P283 Shaw, Paul ISv11, P120 Shawa, Nyambura | P157 Shea, Steven | P60, P125, P223

Sheeba, Vasu | Sy2 Shelton, Jonathan | P57 Shen, Hanjie | P98 Sorenson, Diane | P61 Takahashi, Joseph | Sy13, P21, S83, P28, S4, S9, S33, S86, P71, P72, Sorrell, Joyce | S63 Sheppard, Aaron | P3 P96, P97, P321 Shi, Guangsen | P108, P139 Soto, Carissa | P95 Tam, Eric | P283 Shi, Siyao | P184 Soto, Erin | P29 Tamai, Takako Katherine | P247 Shibata, Shigenobu | P5, P55, P165, Southey, Bruce | P296 Tamanini, Filippo | S17 P167, P248 Spencer, Sade | P304 Tamayo, Alfred G. | S22 Shigeyoshi, Yasufumi | P202, P251 Sponagel, Jasmin | P239 Tanaka, Toshiko | P261 Shimizu, Shinji | S7 St. Hilaire, Melissa | P114, P126, Tang, Xin | P273 P153 Shiraishi, Takuya | P5 Tarling, Geraint | P75 St. John, Peter | S34, P138 Shiu, Shin-han | P235 Tarokh, Leila | S82 Shoblock, James | P57 Stähli, Patrick | P233 Tataroglu, Ozgur | S54 Shrestha, Hira | P214 Stanewsky, Ralf | P107, P232 Tauber, Eran | S90, P75, P258 Shuboni, Dorela | P112 Stangherlin, Alessandra | S8 Taylor, Stephanie | P135 Shuker, David | S90 Stanghi, Jessica | P12 Terajima, Hideki | P173 Steele, Andrew | P162 Sidor, Michelle | P304 Teshiba, Terri | S83 Silver, Rae | S36 Steinert, Joern | P26 tesorero, rafael | P146 Simmonds, Melissa | S26 Steinfeld, Tod | P82 Thaben, Paul | S20, S32, P316 Simms, Carrie | P190 Stelling, Jorg | P138 Thumser, Alfred | S41 Stinchcombe, Adam | P315 Simon, Michelle | S6 Thurley, Kevin | S20 Simoni, Alekos | P107 Storch, Kai-Florian | S39, P118 Tian, Fangyun | S47 Singh, Devraj | S11 Stowie, Adam | P17, P128 Tlmothy, Joseph | P64 Sinturel, Flore | S30 Straehle, Uwe | S96 Tischkau, Shelley | P169 Skarupelova, Svetlana | P86 Strangman, Gary | P10 Tomioka, Kenji | P290 Skene, Debra | S41, P270 Strobel, Werner | P13 Top, Deniz | P272 Slat, Emily | S88, P239 Suen, Ting-Chung | P306 Torres, Rosarelis | S70 Smale, Laura | P112, P161 Suh, Christina | S80 Tosini, Gianluca | P49, P265, P306 Smales, Carolina | P125 Sukhum, Kimberley V. | P33 Totsch, Stacie | P192 Sumova, Alena | P44 Smarr, Benjamin | P183, P288 Toupet, Miche | P322 Smedley, Andrew | S27 Sun, Jonathan | P111, P117 Tovin, Adi | S92 Smidt, Marten | P84 Sutherland, Megan R | P142 Truong, Danny | P24 Suzuki, Takahiro | P289 Smit, Andrea | P92 Tsimakouridze, Elena | S46 Suzuki, Toru | P276 Smith, Caren E. | P261 Tsubosaka, Miku | P165, P248 Smith, Joshua | P143 Suzuki, Yasuko | P120 Ubaldo-Reyes, Laura | P260 Smith, Kristina | S60 Sweedler, Jonathan V. | P296 Ueda, Hiroki | P18, P27, P320 Smith, Laura | S10 Syed, Sheyum | P211, P272 Ukai, Hideki | P27 Smith, Victoria | P56 Syed, Zainulabeuddin | P2 Umemura, Yasuhiro | S86 Socha, Emily | P17 Tokuda, Isao | P275 Umezaki, Yujiro | P290 Sole, Michael | S46 Tackenberg, Michael | S1, P206 Urdiales, Andrew | P50, P77 Somers, David | Sy4, S76 Taghert, Paul | P303 Valekunja, Utham Kashyap | S8, P6 Tahara, Yu | P5, P55, P167, P248 Sonenberg, Nahum | P41 Valentinuzzi, V. S. | P323

Takacs, Tyrus | P106

Song, Young Hun | S75

van de Werken, Maan | P158

van den Berg, Dirk-Jan | S7 van der Horst, Gijsbertus | Sy9, S17, S66, P84, P241, P236, P242, P267 van der Linden, Alexander | P4 van der Veen, daan | P148 van der Vinne, Vincent | S28, P266 van Diepen, Hester | S29, P172 Van Dycke, Kirsten | S66, P267 van Engeldorp Gastelaars, Heleen | P140 Van Gelder, Russell | S25 van Kerkhof, Linda | S66, P267 van Oostrom, Conny | S66, P267 Van Someren, Eus | P60 van Steeg, Harry | S66, P267 Van Swinderen, Bruno | P120 Van Vactor, David | P215 Vandewalle, Gilles | S37, S40, S68 Vanin, Stefano | P253 Vasalou, Christina | P134 Vásquez Ruiz, Samuel | P144 Vasudevan, Sridhar | P278 Velingkaar, Nikkhil | P263 Venkatesan, Anandakrishnan | S51 Vergara, Paula | P199 Versteylen, Mathijs | P280 Vetter, Celine | P286 Vidal, Hubert | P86 Vigorito, Elena | P220

villa caballer, marian | S16 Vinayak, Pooja | P32 Viola, Antoine U. | P13 Vodala, Sadanan | S61

VonBergen, Brett | P45 Voskoboynik, Ayelet | P244 Voskoboynik, Yotam | P244 Wager, Travis | Sy5, P277 Walch, Olivia | P119, P216

Walmsley, Lauren | S15, S27, P196 Walton, James | P25, P79 Wams, Emma J | P158

Wan, Yufeng | P98

Wang, Dongni | P98 Wang, Gang | P256 Wang, Han | S91, P209 Wang, Jingkui | P101 Wang, Lexie L. | S23 Wang, Miao | P269

Wang, Michael | S47, S71 Wang, Thomas | P135 Wang, Tongfei A. | S31 Wang, Wei | P312

WANG, XIAOHAN | P310 Wang, Yonggiang | P317 Waridel, Patrice | P101

Warman, Guy | S53, P217, P232

Watanabe, Hiroyuki | P55

Webb, Anne | S27

Weber, Todd | P106 Webster, Simon G | P76 Weger, Benjamin | S96 Weger, Meltem | S96

Wegner, Sven | S5, P34, P66 Wehrens, Sophie | P270

Wei, Jiajie | S60 Weigl, Yuval | S61 Weing, Cynthia | S74

WEISSMAN, IRVING L. | P244

Weitz, Charels J. | S22

Welsh, David K. | S15, S23, P65, P117

Welty, Natalie | P57 Wentworth, Diana | P115

West, Alexander | P255, P277, S27

Westermark, Pål O. | P68, S20, S32, P316

Whitmore, David | Sy9, P247

Widmer, Lukas | P138 Wilcockson, David C | P76

Willadsen, Gail | P45

Willis, Erik | P82 Winbush, Ari | P4 Winfrey, Devon | P45 Winnebeck, Eva | S79 Winsky-Sommerer, Raphaelle | P120

Wiyanto, Evelyn | P175 Woelders, Tom | P156 Wofgang, Werner | P107

Wolf, Eva | Sy15

Wolfgang, Werner | P232 Wong, Jovi Chau-Yee | P30

Wong, William | S88 Wood, Shona | S69 Woods, Stephen | S63 Woody, Scott | S74 Wright, David C. | S46

Wright, Kenneth | Sy4, P285

Wu, Mark | Sy8

Wu, Chaodong | S62, P166

Wu, Cheng | S60 Wu, David | P123 Wu, Huijuan | P125 Wu, Lisa | S8

Wu, Xi | P108, P139 Xiao, Changfu | S70 Xing, Lijuan | P108, P139

Xu, Cong | P89 Xu, Gang | S47

Xu, Haiyan | S59, P37

Xu, Hang | S62 Xu, Lili | P51 Xu, Min | P107 Xu, Yichi | P178 XU, YING | P310

Yagita, Kazuhiro | S86

Yamada, Rikuhiro | P27, P320

Yamada, Yukihiro | P93

Yamaguchi, Yoshiaki | S21, P276

Yamakawa, Glenn | P200

Yamazaki, Shin | P88, P128, P168

Yan, Jie | P108, P139 Yan, Jun | P178 Yan, Lily | P23, P112 Yang, Xiaoyong | Sy13 Yang, Guang | P47

Yang, Guangrui | P145
yang, jianhua | S16
Yang, Ling | P108, P139
Yang, Nan | S44
Yang, Shuzhang | P72

Yang, Tao | P218
Yao, Zepeng | P295
Yasenkov, Roman | S29
Yasuo, Shinobu | P250
Yates III, John | S14, P238
Yeh, Chien-Hung | P141
yilmaz, rüstem | P146
Yin A, Anne | P142
Yoo, Eunseok | S38

Yoo, Seung-Hee | S86, P28, P71, P72

Yoon, Jeena | P184 Yoshida, Junko | P27 Yoshii, Taishi S y17, P290 Yoshimura, Takashi | Sy10 Yoshitane, Hikari | P173, P236 Young, Martin | P80 Young, Michael | P272

Yu, Hannah | P3
Yu, Le | S69, P255
Yu, Shuang | S87
Yu, Xinyang | P98
Yuan, Elizabeth | P195
Yuen, Andrew | P46
Yun, Dae-Jin | P9
Yun, Sujin | P57

Zadina, Abigail | P175 Zaleski, Joseph | P136

Zamdborg, Leonid | P296 Zamora, Mario | P132 Zarrinpar, Amir | S64

Zee, Phyllis | P14, P63, P123

Zeitzer, Jamie | P164 Zenobi, Renato | S82 Zhang, Lin | P76, P98 Zhang, Luoying | P58 Zhang, Qi | P40 Zhang, Quan | P10

Zhang, Ray | P179

Zhang, Shuqing | S91 Zhang, Yanqing | S91

ZHANG, YONG | P115 Zhang, Zhihui | P139 Zhao, Ruochun | P302

Zhao, Zhaoyang | P245 Zhong, Zhaomin | S91

Zhou, Peng | P148, P271

Zhu, Jialou | S87 Zhu, Lei | S39 Zhu, Lirong | P14

Zhou, Mian | P312

Zhu, Zhonghua | P193 Zimmerman, Steve | S94 Zipunnikov, Vadim | P124 Zoltowski, Brian | P31, P150 Zwighaft, Ziv | P87, P269

Index of Keywords

adipose S62, P81, P85, P132, P142, P148, P165, P208, P265

adrenal S44, P99, P143, P248

aging S14, P60, P124, P143, P145, P224, P241, P263, P289, P290, P291

alcohol P129, P130, P131, P133, P271

amplitude S28, S32, S34, S37, P8, P37, P96, P139, P141, P242, P263, P314, P316, P317

Aplysia P185

Arabidopsis thaliana S43, S73, S74, S75, S76, P150, P174, P312

arrhythmia S15, S47, P36, P42, P65, P136, P254, P291

astrocyte P199, P222

ATP S77, P67

autonomic nervous system P141, P225, P264

autophagy P224

avian S11, P256, P302

behavior S1, S3, S5, S11, S28, S39, S50, S52, S81, S83, S91, S94, S95, P, P, P3, P4, P6, P10, P13, P14, P21, P24, P30, P36, P52, P54, P57, P60, P61, P62, P64, P65, P76, P77, P79, P88, P90, P97, P108, P110, P111, P115, P116, P127, P129, P131, P145, P149, P154, P160, P161, P168, P170, P186, P189, P194, P195, P197, P199, P200, P204, P205, P206, P241, P245, P248, P250, P256, P272, P273, P281, P283, P288, P290, P292, P297, P299, P300, P304

bifurcation S31, P110, P111, P117, P136, P306

bioinformatics S32, S76, S87, P18, P96, P100, P173, P175, P178, P207, P209, P213, P228, P244, P316

bioluminescence S3, S5, S8, S15, S23, S28, S34, S43, S45, S57,

S96, P5, P15, P27, P37, P38, P49, P65, P66, P70, P71, P72, P86, P89, P113, P117, P151, P152, P168, P171, P222, P232, P242, P275

body temperature S10, S30, P8, P85, P103, P252, P257

body weight S10, S64, S67, P80, P85, P90, P97, P132, P144, P165, P259, P267, P268, P285

calcium S35, S54

cAMP S69, P74, P302, P303

cancer S13, S15, S16, P237, P239, P240, P242, P245, P246

cardiovascular S46, S47, P125, P262, P280

ChIP S56, P62, P173, P177, P180, P234

Chlamydomonas

chronotype S67, S81, P15, P42, P74, P121, P157, P187, P282

circatidal P76, P176, P188

coupling S3, S16, S17, S18, S24, S33, S35, S50, P40, P88, P92, P111, P118, P135, P137, P138, P141, P203, P295, P301, P306, P309, P312, P313, P317

crustacean P75, P76

cyanobacteria S77, S78, P67, P68

desynchrony S3, S5, S46, S47, S71, P10, P19, P65, P84, P118, P125, P186, P199, P201, P237, P268, P271, P275, P277, P295

development S38, S43, S73, S86, S87, S88, S89, S91, S96, P43, P44, P45, P47, P48, P51, P53, P59, P144

diabetes S62, S63, S64, S65, S67, P, P78, P80, P82, P86, P132, P142, P148, P169, P265

diapause S90, P210

diurnal S7, S46, S93, P1, P2, P17, P112, P190, P212, P235, P253, P266, P282, P304, P310 Drosophila S8, S19, S20, S38, S49, S50, S51, S52, S54, S61, S72, S85, P6, P16, P26, P35, P40, P42, P43, P58, P107, P115, P120, P131, P149, P154, P155, P175, P176, P177, P191, P193, P194, P205, P206, P211, P215, P230, P231, P232, P233, P249, P253, P258, P272, P273, P274, P289, P290, P291, P293, P295, P298, P299, P300, P301, P303

entrainment S2, S5, S15, S25, S26, S27, S42, S54, S56, S70, S72, S77, S92, S96, P, P3, P5, P14, P17, P22, P23, P41, P52, P53, P54, P57, P79, P93, P95, P106, P107, P109, P115, P128, P133, P134, P137, P140, P147, P162, P170, P187, P192, P195, P196, P198, P210, P230, P244, P249, P251, P252, P260, P261, P274, P275, P276, P277

estrous P254

feeding S10, S64, P2, P3, P77, P97, P108, P148, P162, P165, P168, P170, P248, P259, P262, P263, P264, P267, P269, P270, P271

fibroblast S14, S17, S18, S34, S59, S83, P21, P38, P69, P70, P71, P72, P74, P103, P238

glia P51, P222, P239, P293

Heart P124, P136

homeostasis S9, S10, S13, S40, S64, P16, P93, P179, P201, P211, P218

honey bee S53, P206

human S37, S40, S41, S80, S82, S83, S84, P10, P12, P13, P14, P17, P18, P42, P58, P60, P114, P122, P125, P144, P153, P156, P157, P163, P183, P217, P223, P270, P279, P280, P282, P287

Immune response S44, S45, S46, S62, P7, P21, P166, P219, P220, P221, P222, P223, P224, P225, P226, P312

imprinting S89

intestine P, P55

jetlag S13, S47, S66, S71, S80, P113, P116, P202, P216, P221, P260, P267, P276, P277, P278, P282, P285

kidney S48, P19, P48

learning S91, P46, P60, P90, P91, P183, P184, P186, P283

light S4, S27, S28, S29, S31, S54, S63, S68, S73, S81, S92, P3, P12, P20, P23, P26, P31, P32, P35, P39, P49, P50, P56, P60, P79, P95, P106, P109, P111, P112, P115, P126, P133, P146, P147, P152, P153, P156, P159, P161, P164, P187, P198, P201, P216, P251, P252, P256, P278, P280, P281, P283, P284, P313, P314

mammals S6, S8, S14, S15, S16, S20, S21, S22, S23, S30, S39, S45, S48, S59, S69, S87, P, P25, P27, P29, P30, P34, P37, P38, P41, P42, P44, P46, P58, P64, P65, P66, P69, P71, P73, P80, P87, P88, P90, P94, P102, P103, P104, P105, P106, P124, P127, P130, P137, P138, P139, P143, P160, P161, P173, P178, P179, P180, P202, P203, P218, P222, P228, P238, P242, P246, P250, P275, P281, P283, P288, P309, P310, P311, P313

melanopsin S26, S68, P, P39, P53, P54, P156, P161, P164

melatonin S69, S70, S71, S93, S95, P12, P49, P59, P61, P74, P114, P126, P158, P163, P164, P187, P217, P251, P255, P265, P270, P284, P287, P302

memory S91, P46, P120, P182, P184, P185, P186, P283

metabolism S8, S9, S10, S12, S13, S21, S41, S55, S61, S62, S63, S64, S67, S82, P, P1, P6, P11, P78, P80, P81, P82, P84, P86, P87, P102, P104, P105, P108, P142, P148, P165, P166, P167, P169, P179, P234, P235, P240, P257, P261, P262, P264, P266, P268, P271, P285, P311

microarray S13, S32, S66, P1, P73, P101, P179, P271, P278, P316

microRNA S85, S92, P94, P173, P215, P220, P228

mitochondria S58

modeling S7, S12, S17, S20, S24, S34, S35, S76, S78, P46, P68, P75, P134, P135, P136, P138, P139, P140, P155, P158, P240, P313, P315

muscle S42, P86, P148

neurogenesis S91, S96, P46, P247, P292

Neurospora crassa S12, S43, S55, S56, S57, P95, P98, P146, P151, P152, P171, P227, P234

nonphotic entrainment S14, P89, P114, P172, P200, P201, P277, P308

nuclear receptors P29, P47, P100, P219, P233

Ostreococcus tauri

ovary

oxidative stress S60, P5, P47, P69, P70, P142, P219, P227, P230, P236

paramecium

PAS domain S59, P31, P150, P207

Passer domesticus P256

peripheral clock S4, S22, S23, S25, S30, S44, S84, S87, S89, P, P, P5, P7, P11, P19, P21, P30, P37, P55, P82, P84, P86, P87, P99, P101, P102, P105, P118, P123, P143, P167, P168, P181, P208, P219, P221, P223, P236, P237, P238, P240, P242, P246, P247, P248, P266, P268, P269, P270, P288, P306

phase shift S26, S30, S31, S47, S53, S65, S80, S84, P, P3, P5, P15, P20, P22, P32, P56, P67, P79, P93, P109, P110, P115, P116, P117, P126, P128, P140, P147, P149, P153, P160, P164, P166, P197, P200, P202, P204, P226, P232, P269, P270, P296, P301, P305, P307, P314

phosphorylation S14, S51, S60, S78,P15, P28, P33, P41, P68, P123,P154, P155, P182, P195, P227,P272, P275

photoperiodism S69, S75, S90, P59,P133, P174, P210, P248, P249,P250, P255, P256, P258, P306

photoreception S25, S27, S70, S72,P31, P32, P35, P39, P50, P52,P150, P159, P163, P196, P198

phototaxis

physiology S1, S2, S7, S33, S37, S40, S43, S46, S61, S68, S74, S79, S82, P, P, P1, P2, P11, P22, P24, P26, P29, P30, P39, P40, P41, P50, P55, P64, P66, P77, P78, P132, P136, P158, P170, P188, P189, P190, P191, P192, P194, P223, P235, P236, P250, P259, P298, P303, P304, P308

pineal S92, P126, P163, P251, P302

pituitary S69, P255

Plasmodium

plasticity S31, S52, P110, P111, P120, P182, P231, P293, P298, P299, P304, P307

quantitative trait locus S74, P96

restricted feeding S4, S87, P48, P88, P89, P90, P91, P92, P97, P101, P162, P167, P170, P172, P184, P259, P268

retina S25, S51, S89, P30, P39, P49, P51, P156, P191, P274

retinohypothalamic tract S27, P53, P163, P202, P296

RNAseq S6, S20, S21, S55, S60, S61, S86, P75, P94, P98, P105, P145, P146, P173, P174, P178, P181, P234, P235, P244

robustness S23, S78, P4, P138, P139, P231, P276

SCN S1, S2, S3, S4, S6, S23, S24, S26, S27, S28, S29, S31, S33, S35, S65, S70, S88, S89, P, P8, P20, P22, P23, P24, P25, P27, P34, P41, P44, P53, P56, P64, P79, P81, P88, P92, P93, P109, P112, P113, P116, P126, P128, P130, P134, P135, P137, P138, P140, P147, P159, P164, P172, P188, P189, P192, P196, P197, P198, P199, P200, P201, P202, P203, P204, P225,

P226, P241, P254, P257, P260, P264, P266, P276, P277, P278, P294, P296, P305, P306, P307, P308, P309, P310, P313, P315

senescence

shift work S26, S66, S71, S84, P23, P121, P169, P216, P262, P267, P285

sleep S29, S38, S41, S42, S70, S79, S82, S88, S93, S94, S95, P12, P13, P16, P17, P18, P61, P64, P120, P121, P122, P125, P127, P157, P176, P183, P185, P186, P187, P211, P213, P214, P215, P216, P217, P218, P261, P279, P280, P284, P287, P289, P292

synchrony S4, S5, S18, S24, S34, P34, P118, P137, P140, P195, P199, P294, P315, P317

T cycle S73, P91, P205, P251

tau S80, S88, P57, P128, P129, P210

temperature S12, S19, S54, P4, P98, P107, P210, P258, P266, P273

transcription S6, S9, S19, S20, S22, S24, S48, S49, S52, S55, S56, S57, S59, S61, S75, S86, S96, P15, P25, P36, P37, P45, P62, P73, P82, P95, P99, P100, P101, P123, P139, P146, P147, P151, P171, P175, P176, P177, P180, P181, P193, P220, P231, P233, P234, P235, P239, P245, P253, P259, P297

ultradian S39, S58, S79, S80, P45, P72, P118, P213, P214

Zugunruhe S11, P208,

Participants

(as of May 18, 2014)

Abbott, Sabra Northwestern University sabra.abbott@northwestern.edu

Abel, John University of California, Santa Barbara jha@engr.ucsb.edu

Abraham, Ute Charité-Universitätsmedizin Berlin ute.abraham@charite.de

Abrahamsson, Kathryn University of Tennessee kabraha2@utk.edu

Abruzzi, Katharine Brandeis University katharinebca@me.com

Acosta Rodríguez, Victoria UT Southwestern Medical Center victoria.acosta@utsouthwestern. edu

Adamovich, Yaarit Weizmann Institute of Science yaarit.adamovich@weizmann.ac.il

Agarwala, Sudeep Brandeis University agarwala@brandeis.edu

Agrawal, Parul Texas A and M University pagrawal@bio.tamu.edu

Aguilar-Roblero, Raul Instituto de Fisiologia Celular, UNAM raguilar@ifc.unam.mx

Akiyama, Shuji Institute for Molecular Science, Research Center of Integrative Molecular Systems akiyamas@ims.ac.jp Albers, Elliott Georgia State University biohea@gsu.edu

Albrecht, Urs University of Fribourg urs.albrecht@unifr.ch

Ali, Ahmad Vanda Pharmaceuticals, Inc. ahmad.ali@vandapharma.com

Allada, Ravi Northwestern University r-allada@northwestern.edu

Allen, Charles
Oregon Health & Science University
allenc@ohsu.edu

Amdahl, Christoffer University of Washington christofferamdahl@gmail.com

Ananthasubramaniam, Bharath Charite and Humboldt University, Berlin bharath.ananthasub@gmail.com

Angeles-Castellanos, Manuel Faculta de Medicina. UNAM atatu3@hotmail.com

Antle, Michael University of Calgary antlem@ucalgary.ca

Antoch, Marina Roswell Park Cancer Institute marina.antoch@roswellpark.org

Aoki, Natsumi Waseda Univercity aoki.n@aoni.waseda.jp

Arao, Keiichi ATTO Corporation arao.k@atto.co.jp

Arble, Deanna University of Cincinnati deanna.arble@gmail.com Aryal, Rajindra Harvard Medical School rajindra aryal@hms.harvard.edu

Asher, Gad
Weizmann Institute of Science,
Israel
gad.asher@weizmann.ac.il

Atger, Florian NIHS florian.atger@rd.nestle.com

Aton, Sara University of Michigan, Ann Arbor saton@umich.edu

Axelsson, John Karolinska Institutet john.axelsson@ki.se

Baba, Kenkichi Morehouse School of Medicine bkenkichi@msm.edu

Báez-Ruiz, Adrián Instituto de Investigaciones Biomédicas UNAM adrienalin@hotmail.com

Baik, Soyeon (Lisa) University of California, Irvine soyeonb1@uci.edu

Ballance, Heather University of Pennsylvania ballance@mail.med.upenn.edu

Barlow, Ida University College London ida.barlow.12@ucl.ac.uk

Baroldi, Paolo Vanda Pharmaceuticals adrienne.belken@vandapharma. com

Bartell, Paul Pennsylvania State University pab43@psu.edu Bass, Joseph Northwestern University *j-bass@northwestern.edu*

Basu, Priyoneel University of Calgary pbasu@ucalgary.ca

Beaulieu, Martin QMHUI/Laval University martin.beaulieu@crulrg.ulaval.ca

Bechtold, David University of Manchester david.bechtold@manchester.ac.uk

Bedont, Joseph Johns Hopkins Medical Institute joe.bedont@gmail.com

Belden, William Rutgers University belden@aesop.rutgers.edu

Belle, Mino University of Manchester mino.belle@manchester.ac.uk

Bell-Pedersen, Deborah Texas A&M University dpedersen@bio.tamu.edu

Benegiamo, Giorgia Salk Institute for Biological Studies gbenegiamo@salk.edu

Ben-Shlomo, Rachel University of Haifa - Oranim ekly@research.haifa.ac.il

Besing, Rachel
University of Alabama at
Birmingham
rcbesing@gmail.com

Bettilyon, Crystal University of Texas Southwestern crystal.bettilyon@utsouthwestern. edu

Bittman, Eric University of Massachusetts elb@bio.umass.edu

Blau, Justin NYU justin.blau@nyu.edu Bloch, Guy Hebrew University of Jerusalem guy.bloch@mail.huji.ac.il

Blum, Ian
Douglas Mental Health University
Institute
ian.blum@mail.mcgill.ca

Bogue, Wil Northeastern Illinois University wilbogue@gmail.com

Boivin, Diane McGill University diane.boivin@douglas.mcgill.ca

Bolvin, Capucine Nestlé Institut of Health Science capucine.bolvin@rd.nestle.com

Borjigin, Jimo University of Michigan borjigin@umich.edu

Braam, Janet Rice University braam@rice.edu

Brager, Allison Morehouse School of Medicine allison.brager@gmail.com

Brody, Stuart UCSD sbrody@ucsd.edu

Brown, Tim
University of Manchester
timothy.brown@manchester.ac.uk

Brown, Laurence
University of Oxford
laurence.brown@ndcn.ox.ac.uk

Brown, Steven University of Zurich steven.brown@pharma.uzh.ch

Brunner, Michael Heidelberg University michael.brunner@bzh.uniheidelberg.de

Buck, Loren University of Alaska Anchorage *loren@uaa.alaska.edu* Buhr, Ethan University of Washington buhre@uw.edu

Buijs, Ruud Institute For Biomedical Research ruudbuijs@gmail.com

Buijs, Frederik Institute For Biomedical Research f_buijs@hotmail.com

Bunz, Melanie Biocenter melanie.bunz@stud-mail.uniwuerzburg.de

Butler, Matthew Oregon Health & Science University butlema@ohsu.edu

Cable, Erin University of Chicago erinjca@gmail.com

Cain, Sean Monash University sean.cain@monash.edu

Camacho, Alejandra Texas A&M University acamacho@bio.tamu.edu

Callard, David Stanford Photonics, Inc. dcallard@stanfordphotonics.com

Canal, Maria
University of Manchester
maria.canal@manchester.ac.uk

Cannavo, Rosamaria EPFL rosamaria.cannavo@epfl.ch

Cao, Ruifeng McGill University ruifeng.cao@mail.mcgill.ca

Cassone, Vincent University of Kentucky Vincent.Cassone@uky.edu

Caster, Stephen Texas A&M University scaster@bio.tamu.edu Castillo-Ruiz, Alexandra
University of Massachusetts
Medical School
Alexandra.Castillo-Ruiz@
umassmed.edu

Causton, Helen Columbia University hc2415@columbia.edu

Cazarez, Fernando Institute For Biomedical Research fersitooo@ciencias.unam.mx

Ceriani, Fernanda Fundación Instituto Leloir- CONICET fceriani@leloir.org.ar

Cermakian, Nicolas McGill University nicolas.cermakian@mcgill.ca

Chaix, Amandine
The SALK Institute for Biological
Studies
achaix@salk.edu

Chaves, Ines Erasmus MC i.chaves@erasmusmc.nl

Chavez-Juarez, Jose Luis Instituto de Fisiologia Celular UNAM

ichavez@ifc.unam.mx

Cheeseman, James
The University of Auckland
j.cheeseman@auckland.ac.nz

Chellappa, Sarah University of Liège slchellappa@ulg.ac.be

Chen, Zheng (Jake)
UT Health Science Center at
Houston
zheng.chen.1@uth.tmc.edu

Chen, Ko-Fan University of Cambridge kc436@gen.cam.ac.uk

Chen, Chenghao UCL jeffchenhao@gmail.com Chen, Xiao Brandeis University chxiao@brandeis.edu

Cheng, Hai-Ying Mary University of Toronto Mississauga haiying.cheng@utoronto.ca

Chiu, Joanna University of California, Davis jcchiu@ucdavis.edu

Choe, Joonho KAIST jchoe@kaist.ac.kr

Chong, Christin
University of California, San
Francisco
suetying.chong@ucsf.edu

Clerx, William Brigham and Women's Hospital wclerx@gmail.com

Cockrell, Allison
Navy Research Laboratory
allison.cockrell.ctr@nrl.navy.mil

Cohen, Susan University of California, San Diego susanc@ucsd.edu

Colwell, Christopher
University of California, Los
Angeles
ccolwell@mednet.ucla.edu

Constance, Cara Hiram College constancecm@hiram.edu

Contreras, Adam University of California, Davis ajcon@ucdavis.edu

Coogan, Andrew National University of Ireland Maynooth andrew.coogan@nuim.ie

Cooper, Howard INSERM howard.cooper@inserm.FR

Cooper, Joanna University of Tennesee jcoope44@utk.edu Costa, Rodolfo University of Padova - Italy rodolfo.costa@unipd.it

Crane, Brian Cornell University bc69@cornell.edu

Crosier, Caitlin Kent State University ccrosie2@kent.edu

Crowther, Damian University of Cambridge dcc26@cam.ac.uk

Cuesta, Marc
Douglas Mental Health University
Institute/McGill University
drmcuesta@gmail.com

Cumberbatch, Derrick Vanderbilt University derrick.c.cumberbatch@vanderbilt. edu

Cumin, David University of Auckland d.cumin@auckland.ac.nz

Cunningham, Peter University of Manchester peter.cunningham@manchester. ac.uk

Curran, Kristen
University of Wisconsin Whitewater
currank@uww.edu

Curtis, Annie Trinity College Dublin acurtis@tcd.ie

Czeisler, Charles Harvard Medical School charles_czeisler@hms.harvard.edu

DAlessandro, Matthew Florida State University matthew.dalessandro@med.fsu.edu

Dallmann, Robert University of Zurich dallmann@pharma.uzh.ch

Damulewicz, Milena Jagiellonian University milena.damulewicz@uj.edu.pl Dashti, Hassan Tufts University hassan.dashti@tufts.edu

Dattolo, Teresa Simon Fraser University tdattolo@sfu.ca

Davidson, Alec Morehouse School of Medicine adavidson@msm.edu

de Groot, Marleen HHMI/UTSouthwestern pero588@gmail.com

de la Iglesia, Horacio University of Washington horaciod@uw.edu

DeBruyne, Jason Morehouse School of Medicine jdebruyne@msm.edu

DeWoskin, Daniel University of Michigan dadewoskin@gmail.com

Diaz, Madelen Brandeis University mdneuro@brandeis.edu

Dibner, Charna
Faculty of Medicine, University of
Geneva
Charna.Dibner@hcuge.ch

Diekman, Casey New Jersey Institute of Technology diekman@njit.edu

Dijk, Derk-Jan University of Surrey d.j.dijk@surrey.ac.uk

Dissel, Stephane Washington University in St Louis dissels@pcg.wustl.edu

DiTacchio, Luciano University of Kansas Medical Center Iditacchio@kumc.edu

Dobb, Rachel University of Manchester rachel.dobb@manchester.ac.uk Dominguez Monzon, Gabriela Instituto de Fisiología Celular, UNAM gabrielledm@hotmail.com

Dong, Xinnian
Duke University
xdong@duke.edu

Dovzhenok, Andrey University of Cincinnati dovzheay@ucmail.uc.edu

Dressman, Marlene Vanda Pharmaceuticals marlene.dressman@vandapharma. com

Du, Ngoc-Hien Center for Integrative Genomics Ngoc-Hien.Du@unil.ch

Duclos, Catherine Hôpital du Sacré-Coeur de Montréal catherine.duclos@umontreal.ca

Duffield, Giles University of Notre Dame duffield.2@nd.edu

Duffy, Jeanne Brigham & Women's Hospital, Harvard Medical School jduffy@research.bwh.harvard.edu

Dulong, Sandrine INSERM sandrine.dulong@inserm.fr

Duncan, Marilyn University of Kentucky mjdunc0@uky.edu

Dunlap, Jay
Geisel School of Medicine at
Dartmouth
jay.c.dunlap@dartmouth.edu

Duong, Hao Harvard Medical School hao_duong@hms.harvard.edu

Earnest, David
Texas A&M University Health
Science Center
dearnest@medicine.tamhsc.edu

Eastman, Charmane Rush University Medical Center ceastman@rush.edu

Eck, Saskia Biocenter saskia.eck@uni-wuerzburg.de

Edgar, Rachel University of Cambridge rse23@medschl.cam.ac.uk

Edgar, Nicole University of Pittsburgh nicole.edgar@gmail.com

Edwards, Mathew MRC Laboratory of Molecular Biology medwards@mrc-Imb.cam.ac.uk

Egli, Martin Vanderbilt University martin.egli@vanderbilt.edu

Emery, Patrick
University of Massachusetts
Medical School
patrick.emery@umassmed.edu

Escobar, Carolina Facultad De Medicina Unam escocarolina@gmail.com

Esser, Karyn University of Kentucky karyn.esser@uky.edu

Eugenio de França Laurindo Flôres, Danilo University of Sao Paulo danilo.eugenio.flores@gmail.com

Evans, Jennifer Marquette University jennifer.evans@marquette.edu

Evantal, Naveh Hebrew University of Jerusalem navehe@gmail.com

Fan, Junmei UT Southwestern Medical Center biofjm@gmail.com

Fan, Jin-Yuan UMKC priceji@umkc.edu Fang, Mingzhu Rutgers, The State University of New Jersey fang@eohsi.rutgers.edu

Farre, Eva Michigan State University farre@msu.edu

Fedele, Giorgio University of Leicester gf59@le.ac.uk

Feillet, Celine Universite De Nice feillet@unice.fr

Fernandez, Diego Johns Hopkins University dfernandez@jhu.edu

Ferreira, Filipa UTSW / IMM filipa.ferreira@utsouthwestern.edu

Ferrell, Jessica Northeast Ohio Medical University ifrancl@neomed.edu

Figueiredo, Luisa Instituto de Medicina Molecular Imf@fm.ul.pt

Figueiro, Mariana Rensselaer Polytechnic Institute figuem@rpi.edu

finkielstein, carla Virginia Tech finkielc@vt.edu

FitzGerald, Garret Perelman School of Medicine University of Pennsylvania garret@upenn.edu

Fontenot, Miles University of Texas Southwestern miles.fontenot@utsouthwestern.edu

Foo, Mathias Asia Pacific Center for Theoretical Physics (APCTP) mathiasfoo@gmail.com

Forger, Daniel University of Michigan Forger@umich.edu Foulkes, Nicholas S. ITG / KIT nicholas.foulkes@kit.edu

Frederick, Ariana Concordia University arianafrederick@gmail.com

Frenkel, Lia Fundación Instituto Leloir- CONICET Ifrenkel@leloir.org.ar

Fu, Ying-Hui UCSF ying-hui.fu@ucsf.edu

Fu, Loning Baylor College of Medicine loningf@bcm.edu

Fu, Jingjing University of Texas Southwestern Medical Center jingjing.fu@utsouthwestern.edu

Fukada, Yoshitaka Grad.School of Science, Univ. Tokyo sfukada@mail.ecc.u-tokyo.ac.jp

Fustin, Jean-Michel Kyoto University j.m.fustin@pharm.kyoto-u.ac.jp

Gaddameedhi, Shobhan University of North Carolina shobhan77@yahoo.com

Gall, Andrew Michigan State University gall@msu.edu

Gamble, Karen University of Alabama at Birmingham klgamble@uab.edu

Gandhi, Avni California Institute of Technology avni@caltech.edu

Gao, Peng
UT Southwestern Medical Center
peng.gao@utsouthwestern.edu

Gaspar, Ludmila University of Zurich cuninkova@pharma.uzh.ch Genik, Paula Colorado State University paula.genik@colostate.edu

Geusz, Michael Bowling Green State University mgeusz@bgsu.edu

Gile, Jennifer University of Washington jgile1@uw.edu

Gillette, Martha University of Illinois mgillett@illinois.edu

Glass, J. David Kent State University jglass@kent.edu

Gobet, Cédric EPFL-NIHS cedric.gobet@epfl.ch

Goda, Tadahiro Cincinnati Children's Hospital Medical Center Tadahiro.Goda@cchmc.org

Goessner, Andrea
Berthold Technologies
GmbH & Co. KG
andrea.goessner@berthold.com

Golden, Susan UCSD sgolden@ucsd.edu

Gong, Ming University of Kentucky ming.gong@uky.edu

Gorman, Michael University of California mgorman@ucsd.edu

Gosselin, Pauline University of Geneva pauline.gosselin@unige.ch

Gothilf, Yoav Tel Aviv University yoavgothilf@gmail.com

Gotoh, Tetsuya Virginia Tech tgotoh@vt.edu Graf, Alexander Max Planck Institute of Molecular Plant Physiology graf@mpimp-golm.mpg.de

Granados-Fuentes, Daniel
Washington University in Saint
Louis
dgranado@biology2.wustl.edu

Green, Carla UT Southwestern Medical Center carla.green@utsouthwestern.edu

Green, Noah Vanderbilt University noah.h.green@vanderbilt.edu

Griffith, Leslie Brandeis University griffith@brandeis.edu

Gronfier, Claude INSERM claude.gronfier@inserm.fr

Grosbellet, Edith
Institute of Cellular and Integrative
Neurosciences
grosbellet@unistra.fr

Gumz, Michelle University of Florida michelle.gumz@medicine.ufl.edu

Guo, Jinhu Sun Yat-sen University guojinhu@mail.sysu.edu.cn

Guo, Fang HHMI/Brandeis Univ guofang@brandeis.edu

Gustafson, Chelsea University of California, Santa Cruz chlgusta@ucsc.edu

Guzman Ruiz, mara alaide Instituto de Investigaciones Biomédicas marda1808@gmail.com

Hablitz, Lauren University of Alabama at Birmingham Imh5090@uab.edu Hallows, William University of California, San Francisco william.hallows@ucsf.edu

Hamada, Fumika Cincinnati Children's Hospital Medical Center fumika.hamada@cchmc.org

Haraguchi, Atsushi Waseda University hmar.h@fuji.waseda.jp

Hardin, Paul Texas A&M University phardin@bio.tamu.edu

Harmer, Stacey University of California, Davis slharmer@ucdavis.edu

Harpole, Clifford University of Kentucky ceharpole@uky.edu

Harrington, Mary Smith College mharring@smith.edu

Harrison, Liz
UC San Diego Center for
Chronobiology
emharrison@ucsd.edu

Hastings, Michael MRC Lab of Molecular Biology mha@mrc-Imb.cam.ac.uk

Hattar, Samer Johns Hopkins University shattar@jhu.edu

Hayasaka, Naoto Yamaguchi University Graduate School of Medicine hayasaka@yamaguchi-u.ac.jp

Hayes, Marie University of Maine marie.hayes@maine.edu

Hazelwood, Curtis Simon Fraser University Chazelwo@sfu.ca He, Weiqi Soochow University heweiqi_nju@hotmail.com

Helm, Barbara University of Glasgow barbara.helm@glasgow.ac.uk

Henriksson, Emma The Scripps Research Institute emmah@scripps.edu

Henson, Michael University of Massachusetts henson@ecs.umass.edu

Hermanstyne, Tracey Washington University, St. Louis hermanstynet@wustl.edu

Hertel, Stefanie Charité - Universitätsmedizin Berlin stefanie.hertel@biologie.hu-berlin. de

Herzel, Hans-Peter Institute for Theoretical Biology h.herzel@biologie.hu-berlin.de

Herzog, Erik Washington University herzog@wustl.edu

Hirano, Arisa UCSF *Arisa.Hirano@ucsf.edu*

Hirsh, Jay University of Virginia jh6u@virginia.edu

Hogenesch, John University of Pennsylvania Perelman School of Medicine hogenesc@mail.med.upenn.edu

Holmes, Todd University of California at Irvine tholmes@uci.edu

Honma, Sato Hokkaido University Graduate School of Medicine sathonma@med.hokudai.ac.jp Hoyle, Ned MRC-Laboratory of Molecular Biology nhoyle@mrc-Imb.cam.ac.uk

Hsu, Pei-Ken University of California, San Francisco Pei-Ken.Hsu@ucsf.edu

Hu, Kun Brigham & Women's Hospital/ Harvard Medical School khu@bics.bwh.harvard.edu

Huang, Guocun Soochow University gchuang@suda.edu.cn

Huber, Anne-laure The Scripps Research Institute alhuber@scripps.edu

Hughes, Alun University of Manchester alun.t.hughes@manchester.ac.uk

Hull, Joseph Harvard Medical School / Brigham and Women's Hospital jhull@rics.bwh.harvard.edu

Hummer, Daniel Morehouse College dhummer@morehouse.edu

Hunt, Benjamin University of Leicester bjh13@le.ac.uk

Hurley, Jennifer Geisel School of Medicine at Dartmouth jennifer.hurley@dartmouth.edu

Hut, Roelof University of Groningen r.a.hut@rug.nl

le, Naomi University of Calgary pobox.nie@ucalgary.ca

Ikeda, Yuko Waseda University yuko.ikeda_cd02@fuji.waseda.jp Ikegami, Keisuke Kinki University Faculty of Medicine kikegami@med.kindai.ac.jp

Imai, Shin-ichiro
Washington University School of
Medicine
imaishin@wustl.edu

Imaizumi, Takato University of Washington takato@u.washington.edu

Ishimori, Shizuka Asubio Pharma Co., LTD. (Daiichisankyo group) matsuda.shizuka.hs@asubio.co.jp

Ito, Kumpei
National Institute of Advanced
Industrial Science and
Technology
kump-itou@aist.go.jp

Izumo, Mariko
UTsouthwestern Medical Center
Mariko.Izumo@UTsouthwestern.edu

Jaeger, Cassie
Southern Illinois University School
of Medicine
cjaeger@siumed.edu

Jagannath, Aarti University of Oxford aarti.jagannath@eye.ox.ac.uk

Janich, Peggy
Center for Integrative Genomics
(CIG)
peggy.janich@unil.ch

Jansen, Heiko Washington State University heiko@vetmed.wsu.edu

Jin, Hua HHMI at Brandeis University huajin@brandeis.edu

John, Smith University of Kansas Medical jsmith@kumc.edu

Johnson, Carl Vanderbilt University carl.h.johnson@vanderbilt.edu Johnson, Jeff Reset Therapeutics jeff@resettherapeutics.com

Jones, Jeff Vanderbilt University jeff.jones@vanderbilt.edu

Jouffe, Céline
Nestlé Institute of Health Sciences
SA
celine.jouffe@rd.nestle.com

Kadener, Sebastian
The Hebrew University of
Jerusalem
skadener@gmail.com

Kanda, Genki RIKEN CDB kdgn@cdb.riken.jp

Karapetyan, Sargis Duke University sk197@duke.edu

Karatsoreos, Ilia Washington State University iliak@vetmed.wsu.edu

Karunarathna, Nirmala Texas A&M University mkarunarathna@bio.tamu.edu

Katsuyama, Ângela University of Washington angelak1@uw.edu

Kavakli, ibrahim Koc University hkavakli@ku.edu.tr

Kawasaki, Haruhisa National Institute of Advanced Industrial Science and Technology drosophila-kawasaki@aist.go.jp

Kazuhiro, Yagita Kyoto Prefectural University of Medicine kyagita@koto.kpu-m.ac.jp

Kearney, Louise University of Manchester *louise.kearney-2@manchester.ac.uk* Keenan, William Johns Hopkins University keenanw27@gmail.com

Kern, Ashley
University of California, Santa Cruz
amkern@ucsc.edu

Kerr, Kimberly Brandeis University/HHMI kkerr@brandeis.edu

Kervezee, Laura Leiden University Medical Center *I.kervezee@lumc.nl*

Kiessling, Silke McGill University silke.i.kiessling@gmail.com

Kim, Jae Kyoung The Ohio State Unviersity jaekkim@umich.edu

Kim, Sam Moon Texas A&M University skim@bio.tamu.edu

Kim, Minkyung Korea Advanced Institute of Science and Technology(KAIST) gimari0819@naver.com

Kim, Jin A
National Academy of Agricultural
Science,
Rural Development Administration
jakim72@korea.kr

Kim, Seong Jae Northwestern University seong.kim@northwestern.edu

Kim, Woe Yeon Gyeongsang National University kim1312@gnu.ac.kr

Kingsbury, Nathaniel
University of Massachusetts,
Amherst
njkingsbury@gmail.com

Klerman, Elizabeth Brigham and Women's Hospital/ Harvard Medical School ebklerman@hms.harvard.edu Klose, Markus Washington University klosem@hotmail.com

Kohl Malone, Susan University of Pennsylvania skohlmalone@gmail.com

Kojima, Shihoko UT Southwestern Medical Center shihoko.kojima@utsouthwestern. edu

Kopalle, Hema University of California, Santa Cruz hkopalle@ucsc.edu

Korge, Sandra Charité-Universitätsmedizin Berlin S.Korge@charite.de

Kosir, Rok
Faculty of Medicine, University of
Ljubljana
rok.kosir@mf.uni-lj.si

Kramer, Achim Charité Universitätsmedizin Berlin achim.kramer@charite.de

Kriebs, Anna The Scripps Research Institute annakr@scripps.edu

Kriegsfeld, Lance University of California kriegsfeld@berkeley.edu

Krishnan, Harini Florida State University hkrishnan@neuro.fsu.edu

Kronfeld-Schor, Noga Tel Aviv University nogaks@tauex.tau.ac.il

Kudo, Takashi University of Clifornia, Los Angeles tkudo@mednet.ucla.edu

Kuljis, Dika UCLA dika.kuljis@gmail.com

Kumar, Vivek
UT Southwestern
vivek.kumar@utsouthwestern.edu

Kumar Sharma, Vijay Jawaharlal Nehru Centre for Advanced Scientific Research vsharma@jncasr.ac.in

Kunorozva, Lovemore University of Cape Town KNRLOV001@myuct.ac.za

Kurien, Philip University of California, San Francisco KurienPA@anesthesia.ucsf.edu

Kwak, Pieter Bas Harvard Medical School pbkwak@gmail.com

Kwok, Rosanna University of California, Davis Rskwok@ucdavis.edu

Kyriacou, Charalambos University of Leicester cpk@leicester.ac.uk

Lam, Vu University of California hvulam@ucdavis.edu

Lamba, Pallavi UMass Medical School pallavi.lamba@umassmed.edu

Lamia, Katja The Scripps Research Institute klamia@scripps.edu

Landgraf, Dominic UCSD dlandgraf@ucsd.edu

Lang, Veronika Charité veronika.lang@charite.de

Langel, Jennifer Michigan State University vanloon5@msu.edu

Larkin, Tony Georgia State University tlarkin3@gsu.edu

Larrondo, Luis Pontificia Universidad Catolica De Chile *llarrond@bio.puc.cl* Le, Hiep The Salk Institute

Lear, Bridget University of Iowa bridget-lear@uiowa.edu

Lee, Michael Brigham and Women's Hospital/ Harvard Medical School mllee@partners.org

Lee, Yool University of Pennsylvania School of Medicine yool2@mail.med.upenn.edu

Lee, Jung
Kangwon National University
Hospital
jhielee@kangwon.ac.kr

Lee, Cheng Chi UTHealth Cheng.C.Lee@uth.tmc.edu

Leise, Tanya Amherst College tleise@amherst.edu

Lensie, Jessica Kent State University jlensie@kent.edu

Li, Xiaodong Wuhan University xiaodli@whu.edu.cn

Li, Yan
UT Southwestern Medical Center
Yan9.Li@UTSouthwestern.edu

Li, Xiao-Mei
INSERM U776 "Biological rhythms
and cancers"
xiao-mei.li@inserm.fr

Li, Ye University of Kentucky ylin@uky.edu

Lim, Chunghun UNIST clim@unist.ac.kr Lin, Caroline
McGill University
xue.lin@mail.mcgill.ca

Lindsay, Jonathan University of Tennessee jlindsa4@utk.edu

Lipton, Jonathan
Boston Children's Hospital/
Harvard Medical School
jonathan.lipton@childrens.harvard.
edu

Liu, Tianxin Texas A&M University tliu@bio.tamu.edu

Liu, Andrew University of Memphis acliu@memphis.edu

Liu, Yi UT Southwestern Medical center yi.liu@utsouthwestern.edu

Liu, Yu Hsin The Salk Institute/ UCSD yhl016@ucsd.edu

LiWang, Andy University of California at Merced aliwang@ucmerced.edu

Lockley, Steven Brigham & Women's Hospital steven_lockley@hms.harvard.edu

Logan, Ryan University of Pittsburgh loganrw@upmc.edu

Lokhandwala, Jameela Southern Methodist University jlokhandwala@smu.edu

Loudon, Andrew University of Manchester andrew.loudon@manchester.ac.uk

Lucas, Rob University of Manchester robert.lucas@manchester.ac.uk

Ludin, Nicola
The University of Auckland
n.ludin@auckland.ac.nz

Lukaszewski, Marie-Amélie CHU Ste-Justine, Research center ma.lukaszewski@yahoo.fr

Lyons, Lisa Florida State University *lyons@bio.fsu.edu*

Mahesh, Guruswamy Texas A&M University gmahesh@mail.bio.tamu.edu

Maier, Bert Charité Universitätsmedizin Berlin bert.maier@charite.de

Malkani, Roneil Northwestern University roneilmalkani@gmail.com

Mankowski, Piotr Brigham and Women's Hospital pmankowski@partners.org

Manoogian, Emily University of Massachusetts Amherst emanoogi@cns.umass.edu

Markert, Matthew Texas A&M University mmarkert@bio.tamu.edu

Marpegan, Luciano Universidad Nacional de Quilmes *luciano.marpegan@gmail.com*

Martin, Jeanne Sophie Laval University jeanne-sophie.martin.1@ulaval.ca

Martin, Tristan Caen University tristan.martin61@gmail.com

Martino, Tami University of Guelph tmartino@uoguelph.ca

Marz, Karla Gustavus Adolphus College kmarz@gustavus.edu

Masri, Selma University of California, Irvine smasri@uci.edu Mat, Audrey University of Washington matau@uw.edu

Maury, Eleonore Northwestern University e-maury@northwestern.edu

Mauvoisin, Daniel Nestle Institute of Health Science daniel.mauvoisin@rd.nestle.com

Maywood, Elizabeth MRC-LMB emaywood@mrc-Imb.cam.ac.uk

Mazuski, Cristina Washington University in St. Louis cristina.mazuski@gmail.com

Mazzotta, Gabriella University of Padova gabriella.mazzotta@unipd.it

McCarthy, Dennis CamNtech, Inc. sales@camntech.com

McClung, C. Robertson Dartmouth College mcclung@dartmouth.edu

McClung, Colleen University of Pittsburgh mcclungca@upmc.edu

McHill, Andrew University of Colorado Boulder andrew.mchill@colorado.edu

McKibbon, Reid University of Calgary rwmckibb@ucalgary.ca

McLoughlin, Sarah University of Pennsylvania sarmc@mail.med.upenn.edu

McMahon, Douglas Vanderbilt University douglas.g.mcmahon@vanderbilt. edu

McNeill, John (Mac) Georgia State University jmcneill4@gsu.edu Meeker, Kirsten University of California Santa Barbara kmeeker@cs.ucsb.edu

Meijer, Johanna Dept Molecular Cellbiology, LUMC j.h.meijer@lumc.nl

Menaker, Michael UVA mm7e@virginia.edu

Menegazzi, Pamela University of Würzburg pamela.menegazzi@uni-wuerzburg. de

Menet, Jerome Texas A&M University menet@bio.tamu.edu

Meng, Qing-Jun
Faculty of Life Sciences
qing-jun.meng@manchester.ac.uk

Meredith, Andrea
U. Maryland School of Medicine
ameredith@som.umaryland.edu

Merlin, Christine Texas A&M University cmerlin@bio.tamu.edu

Mermet, Jérôme EPFL jerome.mermet@epfl.ch

Merrow, Martha University of Munich merrow@lmu.de

Meszaros, Krisztina
Center for Pediatrics and
Adolescent Medicine,
University of Heidelberg, Germany
Krisztina.Meszaros@med.uniheidelberg.de

Mezan, Shaul The Hebrew University of Jerusalem shaulmezan@gmail.com

Michael, Alicia University of California - Santa Cruz akmichae@ucsc.edu Michalik, Mateusz Simon Fraser University mjm8@sfu.ca

Michel, Stephan Leiden University Medical Center s.michel@lumc.nl

Mieda, Michihiro Kanazawa University mieda@med.kanazawa-u.ac.jp

Miki, Takao Kyoto University Graduate School of Medicine takao-miki@umin.ac.jp

Milev, Nikolay
University of Cambridge
Metabolic Research Laboratories
nbm25@medschl.cam.ac.uk

Millius, Arthur Laboratory for Systems Biology, RIKEN CDB arthur-millius@cdb.riken.jp

Mintz, Eric Kent State University emintz@kent.edu

Mistlberger, Ralph Simon Fraser University mistlber@sfu.ca

Mitchell, Jennifer University of Illinois mitchll3@illinois.edu

Mohawk, Jennifer UTSouthwestern jennifer.mohawk@utsouthwestern. edu

Molzof, Hylton University of Alabama at Birmingham hmolzof@uab.edu

Mongrain, Valerie Hôpital du Sacré-Coeur de Montréal valerie.mongrain@umontreal.ca

Moran-Ramos, Sofia UNAM sofi_moran@yahoo.com.mx Morgan, Stefanie Stanford University School of Medicine slmorgan@stanford.edu

Mori, Tetsuya Vanderbilt University tetsuya.mori@vanderbilt.edu

Morton, Jenny University of Cambridge ajm41@cam.ac.uk

Mouland, Josh University of Manchester josh.mouland@postgrad. manchester.ac.uk

Muñoz, Felipe PUC fsmunoz@uc.cl

Muraro, Nara Ines Fundacion Instituto Leloir nmuraro@leloir.org.ar

Mure, Ludovic the Salk Institute Imure@salk.edu

Murphy, Jessica Kent State University jamurph4@kent.edu

Murphy, Katherine UC Davis kamurphy@ucdavis.edu

Musiek, Erik Washington Univ. School of Medicine in St. Louis emusiek@yahoo.com

Nagoshi, Emi University of Geneva *Emi.Nagoshi@unige.ch*

Nair, Sudershana University of Tennessee snair1@utk.edu

Najjar, Raymond Stanford University / VA Palo Alto Health Care System rnajjar@stanford.edu Nakashe, Prachi UT Southwestern Medical Center prachi.nakashe@gmail.com

Nangle, Shannon University of Washington nangle@uw.edu

Nitabach, Michael Yale School of Medicine michael.nitabach@yale.edu

Noguchi, Takako UCSD tnoguchi@ucsd.edu

Nolan, Patrick MRC Harwell p.nolan@har.mrc.ac.uk

Nugent, Marie University of Leicester mln6@le.ac.uk

Nunez, Antonio Michigan State University nunez@msu.edu

Ojha, Nikita Texas A&M University nojha@bio.tamu.edu

Okamura, Hitoshi Kyoto University okamurah@pharm.kyoto-u.ac.jp

Oklejewicz, Malgorzata ErasmusMC m.oklejewicz@erasmusmc.nl

Olivares, Consuelo PUC cdolivar@uc.cl

Onder, Yasemin UT Southwestern Medical Center yasemin.onder@utsouthwestern. edu

O'Neill, John MRC LMB oneillj@mrc-Imb.cam.ac.uk

Oosterman, Joelle University of Amsterdam j.e.oosterman@amc.uva.nl Opiol, Hanna Concordia University hanna.opiol@gmail.com

Opperhuizen, Anne-Loes Netherlands Institute for Neuroscience a.opperhuizen@nin.knaw.nl

Oster, Henrik University of Lubeck henrik.oster@uksh.de

Otsuka, Tsuyoshi Kyushu University t-otsuka@brs.kyushu-u.ac.jp

Owino, Sharon Morehouse School of Medicine sowino@msm.edu

Paech, Gemma University of South Australia gemma.paech@unisa.edu.au

Pagani, Lucia UTSouthwestern Medical Center Iucia.pagani@UTSouthwestern.edu

Palacios-Muñoz, Angelina Valparaiso University angelinapm8107@gmail.com

Panda, Satchidananda Salk Institute satchin@salk.edu

Papp, Stephanie The Scripps Research Institue sjpapp@scripps.edu

Parekh, Puja University of Pittsburgh pkp13@pitt.edu

Pariollaud, Marie University of Manchester marie.pariollaud@postgrad. manchester.ac.uk

Park, Noheon UT southwestern medical center noheon.park@utsouthwestern.edu

Park, Hee Jin Gyeongsang National University ckatoworwaoo@hanmail.net Parry, Barbara Univ of California, San Diego bparry@ucsd.edu

Parsons, Michael MRC Harwell m.parsons@har.mrc.ac.uk

Partch, Carrie University of California Santa Cruz cpartch@ucsc.edu

Paschos, Georgios University of Pennsylvania gpaschos@mail.med.upenn.edu

Patel, Sonal Cleveland State University 06sonalp@gmail.com

Pattanayak, Gopal K. University of Chicago gopalpattanayak@uchicago.edu

Patton, Danica Stanford University dfpatton@stanford.edu

Paul, Jodi University of Alabama at Birmingham jodipaul@uab.edu

Paul, Ketema Morehouse School of Medicine kpaul@msm.edu

Pavlovski, Ilya Simon Fraser University pavlovski@sfu.ca

Pawley, Matthew Institute of Natural and Mathematical Sciences m.pawley@massey.ac.nz

Pegoraro, Mirko University of Leicester mp248@le.ac.uk

Peirson, Stuart University of Oxford stuart.peirson@eye.ox.ac.uk

Pendergast, Julie Vanderbilt University Medical Center julie.pendergast@vanderbilt.edu Perelis, Mark Northwestern University mperelis@u.northwestern.edu

Perrin, Dimitri RIKEN dperrin@cdb.riken.jp

Petersen, Christian Simon Fraser University ccpeters@sfu.ca

Petronis, Art
University of Toronto, and
Centre for Addiction and Mental
Health
art.petronis@camh.ca

Petzold, Linda University of California, Santa Barbara petzold@cs.ucsb.edu

Piggins, Hugh
University of Manchester
hugh.piggins@manchester.ac.uk

Pilorz, Violetta University of Oxford violetta.pilorz@gmx.de

Pirez, Nicolas Fundacion Instituto Leloir npirez@leloir.org.ar

Price, Jeffrey UMKC pricejL@umkc.edu

Prober, David California Institute of Technology dprober@caltech.edu

Prosser, Rebecca Univ. Tennessee rprosser@utk.edu

Ptacek, Louis UCSF/HHMI lip@ucsf.edu

Pyza, Elzbieta Jagiellonian University elzbieta.pyza@uj.edu.pl

Qin, Ximing Vanderbilt University ximing.qin@vanderbilt.edu Qu, Zhipeng Nanjing University quzp12@gmail.com

Rahman, Shadab Harvard Medical School sarahman@partners.org

Raizen, David University of Pennsylvania raizen@mail.med.upenn.edu

Ralph, Martin Univesity of Toronto ralph.mr@gmail.com

Ramkisoensing, Ashna LUMC a.ramkisoensing@lumc.nl

Rastogi, Ashutosh Kent State University ashutosh_rastogi06@yahoo.com

Ray, David
University of Manchester
david.w.ray@manchester.ac.uk

Ray, Bryan Science bray@aaas.org

Rea, Mark
Rensselaer Polytechnic Institute
ream@rpi.edu

Reddy, Akhilesh University of Cambridge abr20@cam.ac.uk

Renner, Travis
Reset Therapeutics
travis@resettherapeutics.com

Rey, Guillaume University of Cambridge gr343@medschl.cam.ac.uk

Ricci, Matthew Research Diets, Inc. matthew.ricci@ResearchDiets.com

Richards, Jacob University of Florida jacob.richards@medicine.ufl.edu Riede, Sjaak (J.) University of Groningen j.riede@rug.nl

Rieger, Dirk University of Würzburg dirk.rieger@biozentrum.uniwuerzburg.de

Rihel, Jason University College London j.rihel@ucl.ac.uk

Roberts, Logan University of California, Irvine loganr@uci.edu

Robinson, Ian Wellcome Trust-MRC Institute of Metabolic Science ir268@cam.ac.uk

Robles-Murguia, Maricela University of Notre Dame mroblesm@nd.edu

Roden, Laura University of Cape Town laura.roden@uct.ac.za

Roenneberg, Till Ludwig-Maximilian-University roenneberg@lmu.de

Rosbash, Michael Brandeis University/HHMI rosbash@brandeis.edu

Rosensweig, Clark UT Southwestern Medical Center clark.rosensweig@utsouthwestern. edu

Rosenwasser, Alan University of Maine alan.rosenwasser@umit.maine.edu

Rossi, Luis Felipe Condor Instruments LTDA. ro@condorinst.com.br

Rousso Noori, Liat Weizmann Institute of Science liat.rousso@weizmann.ac.il

Rouyer, Francois CNRS rouyer@inaf.cnrs-gif.fr Ruby, Norman Stanford University ruby@stanford.edu

Russo, Kimberly University of California, Berkeley karusso@berkeley.edu

Rust, Michael University of Chicago mrust@uchicago.edu

Sampogna, Rosemary Columbia University rvs2@columbia.edu

Sancar, Cigdem
Heidelberg University
cigdem.sancar@bzh.uni-heidelberg.
de

Sancar, Gencer Heidelberg University gencer.sancar@bzh.uni-heidelberg. de

Sassone-Corsi, Paolo University of California, Irvine psc@uci.edu

Scheer, Frank
Brigham and Women's Hospital,
Harvard Medical School
fscheer@rics.bwh.harvard.edu

Schirmer, Aaron Northeastern Illinois University *a-schirmer@neiu.edu*

Schlangen, Luc Philips Research *luc.schlangen@philips.com*

Schlichting, Matthias
University of Wuerzburg
matthias.schlichting@biozentrum.
uni-wuerzburg.de

Schmidt, Christina Psychiatric University Clinics chistina.schmidt@upkbs.ch

Schrader, Jessica
Eastern Florida State College
SchraderJ@easternflorida.edu

Schubert, Frank Theodor-Boveri-Institute frank.schubert@biozentrum.uniwuerzburg.de

Schwartz, William University of Massachusetts Medical School william.schwartz@umassmed.edu

Seggio, Joseph Bridgewater State University jseggio@bridgew.edu

Sehgal, Amita HHMI/University of Pennsylvania Perelman School of Medicine amita@mail.med.upenn.edu

Sengupta, Shaon Children's Hospital of Philadelphia sengupta.shaon@gmail.com

Sesma, Michael National Institute of Health michael.sesma@nih.gov

Sexton, Timothy
University of Washington
tsexton@uw.edu

Shafer, Orie University of Michigan otshafer@umich.edu

Shan, Yongli UTSW yongli.shan@utsouthwestern.edu

Sharma, Vishal Bowling Green State University sharmav@bgsu.edu

Shaw, Paul Washington University in St. Louis shawp@pcg.wustl.edu

Shea, Steven Oregon Health & Science University sheast@ohsu.edu

Shelton, Jonathan Janssen R&D jshelto5@its.jnj.com

Shemery, Ashley Kent State University Ashemery@ksu.edu Sheppard, Aaron University of Notre Dame aaron.sheppard.22@nd.edu

Shi, Guangsen Nanjing University shiguangsen1986@gmail.com

Shibata, Shigenobu Waseda university shibatas@waseda.jp

Shigeyoshi, Yasufumi Kinki University School of Medicine shigey@med.kindai.ac.jp

Silver, Rae Columbia University QR@columbia.edu

Simmonds, Melissa Johns Hopkins University msimmonds7@gmail.com

Singh, Devraj McGill University devrajsingh23@gmail.com

Sinturel, Flore University of Geneva flore.sinturel@unige.ch

Skene, Debra University of Surrey d.skene@surrey.ac.uk

Slat, Emily Washington University in St.Louis slate@wusm.wustl.edu

Smale, Laura MSU smale@msu.edu

Smarr, Benjamin UC Berkeley smarr@berkeley.edu

Smit, Andrea Simon Fraser University asmit@sfu.ca

Smith, Victoria University of Calgary smithvm@ucalgary.ca Somers, David Ohio State University somers.24@osu.edu

St. John, Peter UC Santa Barbara peterc.stjohn@gmail.com

Stanewsky, Ralf UCL r.stanewsky@ucl.ac.uk

Stangherlin, Alessandra University of Cambridge as2272@medschl.cam.ac.uk

Stinchcombe, Adam University of Michigan stinch@umich.edu

Storch, Kai-Florian McGill University florian.storch@mcgill.ca

Stowie, Adam Kent State University astowie@kent.edu

Sumova, Alena Institute of Physiology, Academy of Sciences of the Czech Republic sumova@biomed.cas.cz

Sun, Jonathan UC San Diego josun@ucsd.edu

Syed, Sheyum University of Miami sheyum@physics.miami.edu

Tackenberg, Michael
Vanderbilt University
michael.tackenberg@vanderbilt.edu

Taghert, Paul
Washington University Medical
School
taghertp@pcg.wustl.edu

Tahara, Yu Waseda University yutahara0829@gmail.com Takahashi, Joseph University of Texas Southwestern Medical Center joseph.takahashi@utsouthwestern. edu

Tamayo, Alfred Harvard Medical School *Alfred_Tamayo@hms.havard.edu*

Tataroglu, Ozgur UMass Medical School tatarogl@gmail.com

Tate, Barbara Armada Therapeutics barbara.tate@armadatx.com

Tateishi, Norifumi Suntory Wellness Limited Norifumi_Tateishi@suntory.co.jp

Tauber, Eran University of Leicester eran.tauber@gmail.com

Tavartkiladze, Alexandre Georgian Cancer Research Center – Martin D'Abeloff Laboratory alexandre_phd@yahoo.fr

Taylor, Stephanie Colby College srtaylor@colby.edu

Thacher, Scott Orphagen Pharmaceuticals smt@orphagen.com

Timothy, Joseph
University of Manchester
joseph.timothy@manchester.ac.uk

Tischkau, Shelley SIU School of Medicine stischkau@siumed.edu

Top, Deniz Rockefeller University dtop@rockefeller.edu

Trevisan Okamoto, Rodrigo Condor Instruments LTDA. ro@condorinst.com.br

Trott, Alexandra
Texas A&M University
st_alexandra.trott@tamu.edu

Tso, Chak Foon "Matt" Washington University in St. Louis tsofoon@gmail.com

Ubaldo-Reyes, Laura Facultad de medicina UNAM *lubalo_reyes@hotmail.com*

Ueda, Hiroki RIKEN (/University of Tokyo) uedah-tky@umin.ac.jp

Ulman, Edward Research Diets, Inc. info@researchdiets.com

Umezaki, Yujiro Cincinnati Children's Hospital Medical Center yujiro.umezaki@cchmc.org

Valekunja, Utham Kashyap Wellcome Trust-MRC Institute of Metabolic Science ukv20@cam.ac.uk

van der Horst, Gijsbertus Erasmus University Medical Center g.vanderhorst@erasmusmc.nl

van der Vinne, Vincent University of Groningen vincentvandervinne@gmail.com

van Diepen, Hester Leiden University H.C.van_Diepen@lumc.nl

Van Dycke, Kirsten
National Institute for Public Health
and the Environment/Erasmus
Medical Center
kirsten.van.dycke@rivm.nl

van Kerkhof, Linda National Institute for Public Health and the Environment/Erasmus Medical Center Iinda.van.kerkhof@rivm.nl

van Ooijen, Gerben University of Edinburgh Gerben.vanOoijen@ed.ac.uk

van Steeg, Harry National Institute of Public Health and the Environment (RIVM) harry.van.steeg@rivm.nl Vandewalle, Gilles Univertsity of Liège gilles.vandewalle@ulg.ac.be

Vasu, Sheeba Jawaharlal Nehru Centre for Advanced Scientific Research sheebavasu@gmail.com

Vetter, Celine Brigham and Women's Hospital and Harvard Medical School celinevetter@channing.harvard.edu

Vreugdenhil, Erno LUMC ernovreugdenhil@lumc.nl

Wager, Travis Pfizer travis.t.wager@pfizer.com

Walch, Olivia University of Michigan ojwalch@umich.edu

Walmsley, Lauren University of Manchester lauren.walmsley@manchester.ac.uk

Walton, James Georgia State University jwalton18@gsu.edu

Wams, Emma J University of Groningen e.j.wams@rug.nl

Wang, Han Soochow University han.wang88@gmail.com

Wang, Yongqiang University of California, Santa Barbara wyqthu@gmail.com

Warman, Guy University of Auckland g.warman@auckland.ac.nz

Weaver, David UMass Medical School david.weaver@umassmed.edu Webb, lan
University of Mississippi Medical
Center
iwebb@umc.edu

Weber, Todd Rider University tweber@rider.edu

Weger, Benjamin Nestlé Institute of Health Sciences SA Benjamin.Weger@rd.nestle.com

Wegner, Sven University of Manchester sven.wegner@postgrad. manchester.ac.uk

Wehrens, Sophie University of Surrey sophie.wehrens@surrey.ac.uk

Welsh, David University of California welshdk@ucsd.edu

West, Alexander
University of Manchester
alexander.west@manchester.ac.uk

Westermark, Pail Olof Charite-Universitatsmedizin Berlin Pal-Olof.Westermark@charite.de

Whitmore, David
University College London
d.whitmore@ucl.ac.uk

Williams, Trey Vanda Pharmaceuticals *Trey.Williams@vandapharma.com*

Winbush, Ari University of Nevada awinbush237@gmail.com

Winnebeck, Eva Ludwig Maximilians University Munich eva.winnebeck@med.lmu.de

Winsky-Sommerer, Raphaelle University of Surrey r.winsky-sommerer@surrey.ac.uk Woelders, Tom Rijks Universiteit Groningen t.woelders@rug.nl

Wolf, Eva
JGU University Mainz and IMB
Mainz
evawolf1@uni-mainz.de

Wong, Jovi Chau-Yee University of Oxford jovi.wong@ndcn.ox.ac.uk

Wood, Shona University of Manchester shona.wood@manchester.ac.uk

Wright, Kenneth University of Colorado kenneth.wright@colorado.edu

Wu, Lisa
University of Cambridge
Iw469@medschl.cam.ac.uk

Wu, Mark Johns Hopkins University marknwu@jhmi.edu

Xu, Xiaodong Hebei Normal University xiaodong.xu@hebtu.edu.cn

Xu, Ying Nanjing University yingxu@nju.edu.cn

Xu, Pin UT Southwestern Medical Center pin.xu@utsouthwestern.edu

Xu, Yichi
CAS-MPG Partner Institute for
Computational Biology
xuyichi@picb.ac.cn

Xu, Yao Vanderbilt University yao.xu@vanderbilt.edu

Yagita, Kazuhiro Kyoto Prefectural University of Medicine kyagita@koto.kpu-m.ac.jp

Yamada, Yukihiro University of Tennessee yyamada@utk.edu Yamaguchi, Yoshiaki Kyoto University yoshiy@pharm.kyoto-u.ac.jp

Yamakawa, Glenn University of Calgary gryamaka@ucalgary.ca

Yamazaki, Shin University of Texas Southwestern Medical Center shin.yamazaki@utsouthwestern.edu

Yan, Jie Soochow University 20124007008@suda.edu.cn

Yan, Lily Michigan State University yanl@msu.edu

Yan, Jun Shanghai Institutes for Biological Sciences junyan@picb.ac.cn

Yan, Jie Soochow University 20124007008@suda.edu.cn

Yang, Ling Soochow University Iyang@suda.edu.cn

Yang, Shuzhang UT Southwestern Medical Center shuzhang.yang@utsouthwestern. edu

Yang, Guangrui University of Pennsylvania guangrui@mail.med.upenn.edu

Yang, Ling Soochow University *lyang@suda.edu.cn*

Yang, Xiaoyong
Yale University School of Medicine
xiaoyong.yang@yale.edu

Yao, Zepeng The University of Michigan zepenyao@umich.edu Yasuo, Shinobu
Faculty of Agriculture, Kyushu
University
syasuo@brs.kyushu-u.ac.jp

Yeh, Chien-Hung National Central University nzdiw1120@gmail.com

Yoshii, Taishi Okayama University yoshii@cc.okayama-u.ac.jp

Yoshimura, Takashi Nagoya University takashiy@agr.nagoya-u.ac.jp

Yoshitane, Hikari The University of Tokyo stane@mail.ecc.u-tokyo.ac.jp

Yu, Amy Marie Tufts University Medical School amy.yu@tufts.edu

Zarrinpar, Amir UCSD/The Salk Institute azarrinp@ucsd.edu

Zee, Phyllis Northwestern University p-zee@northwestern.edu

Zeitzer, Jamie Stanford University *jzeitzer@stanford.edu*

Zhang, Lin Sun Yat-Sen University Zhlin25@mail2.sysu.edu.cn

Zhang, Luoying
University of California, San
Francisco
Iuoying.zhang@ucsf.edu

Zhang, Lin University of Leicester Iz8@le.ac.uk

Zhang, Qi University of Michigan qzh@umich.edu

Zhang, Yong
University of Massachusetts
Medical School
yong.zhang@umassmed.edu

Zhao, Zhaoyang UTHealth zhaoyang.zhao@uth.tmc.edu

Zhou, Peng University of Notre Dame zhou.pengbj@gmail.com

Zhu, Zhonghua New York University zhonghua.zhu@nyu.edu Zipunnikov, Vadim Johns Hopkins Bloomberg School of Public Health vzipunni@jhsph.edu

Zoltowski, Brian Southern Methodist University bzoltowski@smu.edu

Zonato, Valeria University of Leicester valia.zon@gmail.com Zoran, Mark Texas A&M University zoran@bio.tamu.edu

Zwighaft, Ziv Weizmann Institute of Science zwighaft@gmail.com

Notes

Big Sky Montana

Altitude Adjustment

Big Sky is located near Yellowstone National Park and sits at an elevation of 7500 ft, which is just a little higher than the mile high city of Denver, CO. So, for those of us not accustomed to life at higher elevations, this little segment provides some tips on how to acclimate to altitude.

- 1) **DRINK WATER!** Before the trip, and while you are at Big Sky, staying well hydrated is the best way to adjust to altitude. The best recommendation is to double your water intake.
- **2) Drink Alcohol in Moderation.** Alcoholic drinks pack a greater punch at altitude compared to sea level, especially for the first couple of days. That means less is more. So enjoy yourself, but keep this in mind.
- 3) Eat Foods High in Potassium. Broccoli, bananas, avocado, cantaloupe, celery, greens, bran, chocolate, granola, dates, dried fruit, potatoes and tomatoes all make the list.
- 4) Watch Your Physical Activity. The effects of exercise are more intense. Run 6 miles instead of your normal 10...
- **5) Protect from the Sun.** There's 25 percent less protection from the sun at this altitude. Use sunscreen, sunglasses, and lip balm.
- 6) Dress in Layers. Temperatures are warm in the day, but can be chilly at night. Be prepared.
- 7) **Enjoy Yourself.** Don't let anything you hear about the altitude scare you. Air is just thinner and dryer. Just follow these simple tips and you will very likely not even notice the difference.

In the unlikely event that you do experience altitude sickness, drugs such as Diamox (Acetazolamide) can reduce symptoms and duration. Ideally, Diamox should be taken a few days prior to your trip, but it can also be used on the spot if you start feeling ill. Keep ibuprofen or acetaminophen on hand to prevent headaches. Big Sky does have a clinic on-site.

Dining Guide to Big Sky Resort

At Big Sky Resort, you have dining options. We have arranged for a convenient, daily buffet to be served in Huntley Lodge. If you want a special treat, try Buck's T-4. And there are many other choices depending on where and what you want to eat.

Mountain Village: Walking distance from the hotels and conference center.

Town Center: A 25-minute shuttle down the mountain.

Meadow Village: A 30-minute shuttle down the mountain.

Canyon: A 35-minute shuttle down the mountain.

Things to do at Big Sky

bigskyresort.com/things-to-do/activities

Logo Contest Winners

First Place (front cover):

Peter St. John Graduate Student University of California, Santa Barbara

Second Place (left):

Louise Kearney Graduate Student University of Manchester

Third Place (center):

Marie Pariollaud Graduate Student University of Manchester

Honorable Mention (right):

Nicola Ludin Graduate Student University of Auckland